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Abstract

Vizing’s Theorem from 1964 states that any n-vertex m-edge graph with maximum degree
∆ can be edge colored using at most ∆+1 colors. For over 40 years, the state-of-the-art running
time for computing such a coloring, obtained independently by Arjomandi [1982] and by Gabow,
Nishizeki, Kariv, Leven and Terada [1985], was Õ(m

√
n). Very recently, this time bound was

improved in two independent works, by Bhattacharya, Carmon, Costa, Solomon and Zhang to
Õ(mn1/3), and by Assadi to Õ(n2).

In this paper we1 present an algorithm that computes such a coloring in Õ(mn1/4) time. Our
key technical contribution is a subroutine for extending the coloring to one more edge within
time Õ(∆2 +

√
∆n). The best previous time bound of any color extension subroutine is either

the trivial O(n), dominated by the length of a Vizing chain, or the bound Õ(∆6) by Bernshteyn
[2022], dominated by the length of multi-step Vizing chains, which is basically a concatenation of
multiple (carefully chosen) Vizing chains. Our color extension subroutine produces significantly
shorter multi-step Vizing chains than in previous works, for sufficiently large ∆.

1quasi nanos, gigantium humeris insidentes
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Part I

Extended Abstract

1 Introduction

Let G = (V,E) be a simple, undirected m-edge n-vertex graph with maximum degree ∆. For an
integer κ ∈ N+, a κ-edge coloring χ : E → {1, 2, . . . , κ} of the graph G assigns a color χ(e) to every
edge e ∈ E, so that any two adjacent edges receive distinct colors. The minimum κ for which the
graph G admits a κ-edge coloring, or the edge chromatic number of G, cannot be smaller than ∆.
On the other hand, Vizing’s Theorem states that ∆ + 1 colors are always sufficient [Viz64]

Vizing’s original proof for the existence of (∆ + 1)-edge coloring can rather easily be converted
into an O(mn) time algorithm. In two independent works from the 80s, Arjomandi [Arj82] and
Gabow et al. [GNK+85] improved this runtime bound to Õ(m

√
n).2 Recently, Sinnamon [Sin19]

used randomization to achieve a clean bound of O(m
√
n). There has been no polynomial improve-

ment over this m
√
n time barrier in over 40 years, until very recently, where this time bound was

improved in two independent works. Bhattacharya, Carmon, Costa, Solomon and Zhang [BCC+24]
improved the time bound to Õ(mn1/3), which provides a polynomial improvement over the m

√
n

time bound in the entire regime of parameters. [Ass24] achieved a time bound of Õ(n2), which in
particular provides a near-linear time algorithm for dense graphs; refer to Section 1.1 for additional
results in [Ass24], where more than ∆ + 1 colors are used. Both algorithms of [BCC+24] and
[Ass24] are randomized and the running time bounds hold with high probability. Remarkably, the
approaches in [BCC+24] and in [Ass24] are inherently different. In a nutshell, the key contribution
of [BCC+24] is in speeding up the coloring of the last few edges whereas the key contribution of
[Ass24] is in speeding up the coloring of all but the last few edges.

Despite this exciting recent progress, the following outstanding question remains open.

How fast can one compute a (∆ + 1)-edge coloring of an input m-edge n-vertex graph?

By combining the results of [BCC+24] and [Ass24], one can directly get a running time of Õ(n
√
m).3

Other than this direct corollary of the combination of the two works [BCC+24, Ass24], it is unclear
whether any further improvement is possible: This is exactly where the contribution of the current
paper lies. Specifically, we4 prove the following theorem.

Theorem 1.1. Given a simple, undirected m-edge n-vertex graph G = (V,E) with maximum degree
∆, we can compute a (∆ + 1)-edge coloring of G in Õ(mn1/4) time with high probability.

Our proof of this theorem builds on the recent works of [BCC+24, Ass24], as well as on a sequence of
earlier works [DHZ19, Ber22, Chr23]. Our key technical contribution is a subroutine for extending
a partial coloring to one more edge within time Õ(∆2 +

√
∆n). The best previous time bound of

any color extension subroutine is either the trivial O(n), dominated by the length of a Vizing chain,
or the bound Õ(∆6) by Bernshteyn [Ber22], dominated by the length of multi-step Vizing chains,
which is basically a concatenation of multiple (carefully chosen) Vizing chains. There is also a
much faster color extension subroutine, by Duan et al. [DHZ19]: it uses (1+ ϵ)∆ colors within time
Õ(1/ϵ2), provided that ∆ = Ω̃(1) and ϵ = Ω̃(1/

√
∆); we note that the minimum number of colors

2We use the notation Õ(·) throughout to suppress polylogarithmic in n factors.
3This observation was made via personal communication with the author of [Ass24].
4quasi nanos, gigantium humeris insidentes
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achievable by [DHZ19] is ∆ + Õ(
√

∆), and the respective runtime is Õ(∆). Even slightly reducing
the number of colors below ∆ + Õ(

√
∆), while allowing a higher time of Õ(∆2), is currently out of

reach.
Our color extension subroutine settles for the aforementioned higher running time of Õ(∆2 +√

∆n); even then, it has to drill much deeper than [DHZ19], since the transition from ∆ + Õ(
√

∆)
colors to ∆ + 1 has to overcome numerous nontrivial technical hurdles. Ultimately, we manage to
produce significantly shorter multi-step Vizing chains than in previous works for ∆ + 1 colors, in
the regime that ∆ is sufficiently large; we then demonstrate the usefulness of such a color extension
subroutine in proving Theorem 1.1. A comprehensive technical overview is given in Section 2.

1.1 Related Work

If we allow for (sufficiently) more colors than ∆ + 1, then the problem becomes (dramatically)
simpler. First, it was known since the 80s that, for ∆ + Õ(

√
∆) colors, the problem can be solved

in Õ(m) time [KS87]. A recent line of works provided algorithms with near-linear runtime for
(1 + ϵ)∆-edge coloring [DHZ19, BCPS24b, EK24], culminating with the recent result of [Ass24]
for (∆ +O(log n))-edge coloring in O(m log ∆) time and a (1 + ϵ)∆-edge coloring in O(m log(1/ϵ))
time for any ϵ = ω(log n/∆).

There is a large body of work on edge coloring in restricted graph classes. First, for bipartite
graphs one can compute a ∆-edge coloring in Õ(m) time [CH82, COS01, Alo03]. One can compute a
(∆+1)-edge coloring in Õ(m∆) time [GNK+85] for bounded degree graphs. This result of [GNK+85]
from the 80s was generalized recently for bounded arboricity graphs [BCPS23], and there has been
further recent work on edge coloring in bounded arboricity graphs [BCPS24a, CRV24, Kow24].
Refer to [CY89, CN90, CK08] and the references therein for works on edge coloring in planar
graphs, bounded treewidth graphs and bounded genus graphs.

Finally, the edge coloring problem is receiving an extensive and growing research attention in
various computational models other than the classic static sequential setting, including in dynamic
algorithms [BM17, BCHN18, DHZ19, Chr23, BCPS24b, Chr24], distributed algorithms [PR01,
EPS14, FGK17, GKMU18, BBKO22, CHL+20, Ber22, Chr23, Dav23], online algorithms [CPW19,
BGW21, SW21, KLS+22, BSVW24, DGS24], and streaming algorithms [BDH+19, BS23, CMZ23,
GS23].

1.2 Organization of the Rest of the Paper

To prove Theorem 1.1, we use 3 different subroutines, which we formally describe in Part II of
our paper. In Section 2, we give a technical overview of our algorithm and analysis. In Sections 3
and 4, we sketch the analysis of the subroutines that we use to prove Theorem 1.1. In Part II, we
provide the full version of our paper.5

2 Overview of Our Techniques

Our key contributions are to design an efficient algorithm for the following subroutine, and to show
that it leads to Theorem 1.1 in combination with the machinery developed in [BCC+24] and [Ass24].

(∆ + η)-Color Extension Subroutine: Here, η ≥ 1 is an integer. The input to this subroutine
is a graph G = (V,E) with maximum degree ∆, a given edge e ∈ E, and a valid coloring χinit :
E \ {e} → [∆ + η] of G \ {e}. The subroutine has to extend the partial coloring χ to the entire

5See the first paragraph in Part II for the organization of the full version of our paper.
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graph G, by assigning some color c ∈ [∆ + η] to the uncolored edge e ∈ E and possibly changing
the colors of some edges in E \ {e}. Let χfinal : E → [∆ + η] be the valid (∆ + η)-edge coloring
of G when the subroutine finishes execution. We define the cost incurred by the subroutine to
be the number of edges in G that change their colors during this process, i.e., the cost equals
1 + |{e′ ∈ E \ {e} : χinit(e

′) ̸= χfinal(e
′)}|. It is easy to observe that the runtime of any such

subroutine is at least its cost, because the subroutine needs to spend Ω(1) time to change the
color of any given edge. We now summarize a lower bound derived by Chang et al. [CHL+20].

Theorem 2.1 ([CHL+20]). Any (∆ + η)-color extension subroutine has cost Ω((∆/η) log(ηn/∆)).

Why Is This Useful? Suppose that we had a (∆ + 1)-color extension subroutine whose runtime
matched the lower bound of Theorem 2.1, up to polylogarithmic factors. Then this would imply an
algorithm for (∆ + 1)-edge coloring that runs in Õ(m) time! Below, we explain this in more detail.

We start by applying a well-known Eulerian partition technique [Arj82, GNK+85, Sin19]. In
Õ(m) time, this allows us to partition the input graph G = (V,E) into two (almost) equal-sized
subgraphs G1 = (V,E1) and G2 = (V,E2), such that maximum degee in each of these subgraphs is
≤ ⌈∆/2⌉. We then recursively color G1 and G2 using two mutually disjoint palettes, each of size
⌈∆/2⌉ + 1. This gives us a 2 · (⌈∆/2⌉ + 1) ≤ (∆ + 3)-edge coloring of G. We next uncolor those
edges in G that belong to the two least popular color classes. By a simple averaging argument,
this leads to a partial (∆ + 1)-edge coloring of G with O(m/∆) uncolored edges. We next scan
through these uncolored edges, and extend the partial (∆ + 1)-edge coloring to them one at a time
by applying the (∆ + 1)-color extension subroutine. Note that we make O(m/∆) calls to the color
extension subroutine, each call taking Õ(∆) time. Thus, the total time spent on all these calls is
O(m/∆) · Õ(∆) = Õ(m). At the end of the scan, we have a (∆ + 1)-edge coloring of G. The overall
runtime is captured by the following recurrence, whose solution is T (m,∆) = Õ(m).

T (m,∆) = 2 · T (⌈m/2⌉, ⌈∆/2⌉) + Õ(m). (1)

Accordingly, a natural line of attack on the problem is to design an efficient (∆+1)-color extension
subroutine. For this plan to work, however, we first need to address the following concern.

What happens if we have a (∆ + 1)-color extension subroutine that runs in, say, Õ(∆2) time
(which is reasonably fast, but falls short of matching the lower bound of Theorem 2.1)? Unfortu-
nately, if we plug in such a color extension subroutine in the framework described above, then we
spend Õ(∆2) ·O(m/∆) = Õ(m∆) total time to extend the coloring to the last O(m/∆) uncolored
edges. So, the last term in the RHS of (1) becomes Õ(m∆) instead of Õ(m). Thus, using this
approach, the time taken to compute a (∆ + 1)-edge coloring is now Ω(m∆), which is no better
than the existing Õ(m∆) time algorithms by [Arj82, GNK+85, Sin19]. So the concern is that the
above framework is not robust: It does not give any polynomial advantage over the current state-
of-the-art, if our (∆ + 1)-color extension subroutine takes Ω(∆2) time. To address this concern, we
synthesize the main technical insights from [BCC+24], and prove the following lemma.

Lemma 2.2. Consider a partial coloring χ : E \ E⋆ → [∆ + 1] of a graph G = (V,E), where
E⋆ ⊆ E is the set of uncolored edges. Let U⋆ ⊆ V be a vertex cover of G⋆ := (V,E⋆). Then there
is a randomized algorithm that extends χ to Ω (|E⋆|) edges of E⋆ in Õ (|E⋆|∆ + ∆m|U⋆|/|E⋆|)
expected time. Specifically, the algorithm terminates with a partial coloring χ′ : E \ E′ → [∆ + 1]
of G, with E′ ⊆ E being the set of uncolored edges, such that E′ ⊆ E⋆ and |E⋆ \ E′| = Ω (|E⋆|).

The above lemma shows how to efficiently extend a partial (∆ + 1)-edge coloring to a constant
fraction of a batch of uncolored edges, when they admit a small vertex cover. For comparison, as
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implicit in [BCC+24], the runtime bound for the same task is

Õ

(
|E⋆|∆ + min

τ≥1

{
∆m|U⋆|τ
|E⋆|

+
|E⋆|n
τ

})
,

which is always worse than the new bound we derive in Lemma 2.2; refer to Section 6 (see the
remark following Lemma 6.1) for a detailed discussion on this matter. In addition, our proof of
Lemma 2.2 is arguably much simpler and more intuitive than the analysis in [BCC+24]; we defer
the complete, self-contained proof of this lemma to Section 9.

We are now ready to address the concern we pointed out after recurrence (1). Lemma 2.2, along
with the recent breakthrough result of [Ass24], implies Lemma 2.3 stated below. This gives us the
desired tradeoff between the runtime of a (∆ + 1)-color extension subroutine and the runtime of a
(∆ + 1)-edge coloring algorithm. Section 3 outlines the main idea behind the proof of Lemma 2.3.

Lemma 2.3. Let there be a (∆ + 1)-color extension subroutine with Õ(∆γ) expected runtime, for
some γ ≥ 1. Then there is a (∆+1)-edge coloring algorithm with Õ

(
mn(γ−1)/(2γ)

)
expected runtime.

If we set γ = 1 in the above lemma, then as expected it leads to a Õ(m) time (∆ + 1)-edge
coloring algorithm; and as long as γ < 3, we get a polynomial improvement over the state-of-the-art
Õ(mn1/3) time bound of [BCC+24]. Thus, ideally we would like to obtain a (∆+1)-color extension
subroutine with (say) an expected runtime of Õ(∆2.99). But this brings us in front of a significant
technical challenge, as explained below.

A Major Challenge: In recent years, an influential line of work [DHZ19, SV19, CHL+20, GP20,
Ber22, Chr23] has addressed the question of finding a small augmenting subgraph to extend a partial
coloring to an uncolored edge, primarily from a different vantage point of distributed algorithms.
Many of these results were obtained using multi-step Vizing chains, a generalization of the central
object used in Vizing’s original proof [Viz64]. Couched in our language, this is closely related to
designing a color extension subroutine with small cost. In particular, for a (∆ + 1)-color exten-
sion subroutine, the current state-of-the-art bounds are by [Chr23] and [Ber22], who respectively
achieve O(∆7 log n) and O(∆6 log2 n) costs using multi-step Vizing chains. It therefore remains an
outstanding open question to design such a subroutine with a cost, and moreover with a runtime,
of Õ(∆2.99), as demanded by Lemma 2.3. We demonstrate that this barrier can be bypassed by
instead achieving the time bound summarized in the theorem below; in fact, proving this theorem
is our main technical contribution.

Theorem 2.4. Given a graph G = (V,E) and a partial (∆ + 1)-edge coloring χ of G with an
uncolored edge e ∈ E, we can extend χ to the edge e in Õ(∆2 +

√
∆n) expected time.

We present a detailed outline of the proof of Theorem 2.4 in Section 4. For now, we focus on
emphasizing the following two conceptual, take-home messages. First, Theorem 2.4 is sufficient
for making a polynomial improvement over the state-of-the-art Õ(mn1/3) runtime for computing a
(∆ + 1)-edge coloring [BCC+24]. As a simple sanity check, consider the following two cases.

(i) ∆ < n1/4. Here, we can apply any existing Õ(m∆) time algorithm [Arj82, GNK+85, Sin19]
to compute a (∆ + 1)-edge coloring in Õ(mn1/4) time.

(ii) ∆ > n1/4. Here, it is easy to verify that ∆2.5 ≥
√

∆n, and hence Theorem 2.4 implies a
(∆ + 1)-color extension subroutine with Õ(∆2.5) expected runtime. So we can set γ = 2.5 in
Lemma 2.3, to get a (∆+1)-edge coloring algorithm with an expected runtime of Õ(mn3/10).

4



Thus, in both cases we obtain a polynomial improvement over the previous Õ(mn1/3) runtime bound
of [BCC+24]. In Section 7, we perform a more refined analysis, and derive that Theorem 2.4 actually
implies a (∆+1)-edge coloring algorithm with Õ(mn1/4) expected runtime (see Theorem 7.3). This
leads us to our main result, as stated in Theorem 1.1.

The second message we wish to emphasize is this: The starting point of our approach for proving
Theorem 2.4 is the multi-step Vizing chain construction of [DHZ19]. Specifically, [DHZ19] designed
a ((1 + ϵ)∆)-color extension subroutine with an expected runtime of Õ(1/ϵ2), as long as ∆ = Ω̃(1)
and ϵ = Ω̃(1/

√
∆). A priori, it seems that such a bound will not be suitable for our purpose,

because we want to set ϵ = 1/∆. We now outline, at a very high level, the algorithm of [DHZ19]
and how we build on top of it.

In the ensuing paragraphs, we assume that the reader is already familiar with the proof of Vizing’s
theorem and concepts like “alternating paths”, “fans” and “Vizing chains”.

The [DHZ19] Algorithm: We are given an input graph G = (V,E), and a partial ((1+ϵ)∆)-edge
coloring χ in G with one uncolored edge e = (u, v). The algorithm of [DHZ19] proceeds in R =

Θ(log n) rounds. For each round i ∈ {1, . . . , R}, it samples a subset of colors Ci ⊆ [∆+1]\
(⋃

j<i Cj
)

of size |Ci| = Θ(log n/ϵ) independently and u.a.r. We refer to Ci as the palette for round i. For
technical reasons, [DHZ19] want these palettes across different rounds to be mutually disjoint. In
addition, for each i ∈ [R], they want that under any fixed partial coloring χ′ of G, every vertex v
has at least one missing color in Ci.6 To ensure these two properties, it is easy to verify that we
must have |R| · |Ci| = Θ(log2 n/ϵ) < ϵ∆, the RHS being the slack, in terms of the number of extra
available colors. This necessitates the requirement that ϵ2 = Ω̃(1/∆), and hence ϵ = Ω̃(1/

√
∆).

Let u1 := u, v1 := v, e1 := (u1, v1) and χ1 := χ. At the start of a given round i ∈ [R], [DHZ19]
have a partial coloring χi and an uncolored edge ei = (ui, vi) w.r.t. χi. Using only the colors from
the palette Ci, they identify a Vizing chain starting from an endpoint (say) ui of ei. If the alternating
path corresponding to this Vizing chain has length less than L := Θ̃(1/ϵ2), then they apply the
Vizing chain to extend the partial coloring to ei, and their algorithm terminates. Otherwise, they
pick some αi ∈ [L] independently and u.a.r., and shift the position of the uncolored edge from ei
to the αth

i edge (say) ei+1 = (ui+1, vi+1) on the concerned alternating path (say) Pi. This is done
by appropriately shifting the colors on the Vizing fan and the first αi edges of Pi, which leads to a
new partial coloring χi+1. The algorithm then proceeds to round (i + 1).

The choice of the value of L is dictated by the fact that for technical reasons, [DHZ19] have
to ensure that L = Ω(|Ci|2). The main technical contribution of [DHZ19] is to show that this
algorithm terminates within R rounds, w.h.p.7

Our Approach: At a very high-level, we diverge from [DHZ19] in two major aspects. First, since
we need to set ϵ = 1/∆, we cannot afford to have these separate palettes {Ci}i across different
rounds, and so we get rid of them altogether. Morally, we observe that all we need is the following
key property: The pair of colors on the concerned alternating path in each round i ∈ [R] is disjoint
from the ones used in previous rounds. As long as this key property holds, the [DHZ19] analysis
continues to work just fine. (This assertion has a big caveat associated with it, namely, the com-
plications that arise from the Vizing fans; see Section 4.5 for a discussion on those complications.
But we ignore the fans for now.)

6We say that a color is missing at v if it is not assigned to any of the edges incident on v. Since v has degree at
most ∆, it has at least ϵ∆ missing colors.

7The in-expectation guarantee follows because if the algorithm fails, then it can always revert back to the trivial
implementation of Vizing’s proof to extend the partial coloring to one edge in O(n) time.
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The second point of divergence from [DHZ19] arises because the key property might not hold
after a certain number of rounds. To address this issue, our main insight is to increase the value
of the parameter L to be := Θ̃(1/ϵ2 +

√
∆n) = Θ̃(∆2 +

√
∆n). With this new increased value

of L, we derive the following crucial implication (see Lemma 4.4). Let i ∈ [R] be the first round
such that: most of the L choices for the value of αi lead to a scenario where the subsequent round
i + 1 will not satisfy the key property. Then with sufficiently large probability, the algorithm will
terminate in the next round (i.e., in round i + 1). This leads us to a win-win framework. Either
round i is such that with good probability we can continue to apply the analysis of [DHZ19] in the
subsequent round, or with good probability our algorithm actually terminates in the subsequent
round. Section 4 contains a much more detailed exposition of this analysis.

Finally, we need to overcome further significant obstacles to deal with the Vizing fans. The
complete proof of Theorem 2.4, which handles these obstacles, is deferred to Section 8.8

3 Proof (Sketch) of Lemma 2.3

By applying Lemma 2.2 at most O(log n) times, where in each of these applications we have at
most |E∗| and at least |L| uncolored edges, we derive the following corollary.

Corollary 3.1. Suppose that we receive as input: (i) a partial (∆ + 1)-coloring χ of G as specified
in Lemma 2.2 and (ii) a parameter L ∈ {1, . . . , |E⋆|}. Then in Õ(|E⋆|∆ + ∆m|U⋆|/L) expected
time, we can obtain a partial (∆ + 1)-coloring χ′′ : E \ E′′ → [∆ + 1] of G, with E′′ being the set
of uncolored edges, such that E′′ ⊆ E⋆ and |E′′| ≤ L.

To convey the main idea behind the proof of Lemma 2.3, we will assume that the input graph
G = (V,E) is almost ∆-regular, that is, the degree of each vertex v ∈ V is Ω(∆) and hence m =
Θ(n∆). We also assume that ∆ = ω(log n); otherwise, we can apply an existing algorithm [Arj82,
GNK+85, Sin19] to compute a (∆ + 1)-edge coloring of G in Õ(m∆) = Õ(m) time.

We sample each vertex v ∈ V into a set U⋆ ⊆ V independently with probability (κ log n)/∆,
for a sufficiently large constant κ > 1. Let E⋆ := {(u, v) ∈ E : {u, v} ∩ U⋆ ̸= ∅} denote the set
of edges incident on U⋆, and let E0 := E \ E⋆ denote the set of remaining edges in G. Define the
subgraphs G⋆ := (V,E⋆) and G0 := (V,E0).

Consider any vertex v ∈ V . Its degree in G is at most ∆, and each of its neighbors gets sampled
in U⋆ with probability (κ log n)/∆. Thus, applying standard Chernoff bounds, we infer that the
degree of v in G0 is at most (∆ − κ′ log n) w.h.p., for a sufficiently large constant κ′ > 1 that
depends on κ. Taking a union bound over all v ∈ V , we get that whp the maximum degree in G0

is at most (∆ − κ′ log n). Based on this observation, we now compute a (∆ + 1)-coloring χ of G0

in Õ(m) time, by invoking the algorithm of [Ass24]. Note that χ is a partial (∆ + 1)-edge coloring
of the entire graph G, with E⋆ being the set of uncolored edges and U⋆ being a vertex cover of
G⋆ := (V,E⋆), just as in the statement of Lemma 2.2.

At this point, we fix an L ∈ {1, . . . , |E⋆|} whose value will be determined later. Next, we apply
Corollary 3.1 on (χ,G,U⋆, E⋆, L) to obtain a partial coloring χ′′ : E \ E′′ → [∆ + 1], with E′′ ⊆ E
being the set of remaining uncolored edges and |E′′| ≤ L. It now remains to extend the partial
(∆ + 1)-coloring χ′′ to the edges in E′′. Towards this end, we fork into one of the following cases.

Case (i): ∆γ > n. In this case, we scan through the edges in E′′. While considering an edge
e ∈ E′′ during this scan, we extend the current partial coloring to e, using a (∆+1)-color extension
subroutine implied by Vizing’s original proof which runs in O(n) time. Thus, overall we spend
O(n|E′′|) = O(nL) time to extend the partial (∆ + 1)-coloring χ′′ to all the edges in E′′.

8The proof in Section 8 is self-contained and uses slightly different notation than the proof sketch in Section 4.
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Case (ii): ∆γ ≤ n. Here, the basic set up remains the same as in Case (i) above, except
the following: While considering an edge e ∈ E′′ during the scan, we apply the (∆ + 1)-color
extension subroutine that runs in Õ(∆γ) expected time. Thus, overall we spend Õ(∆γ |E′′|) =
Õ(∆γL) expected time to extend the partial (∆ + 1)-coloring χ′′ to all the edges in E′′.

It is easy to see that at the end of the above process, we obtain a (∆ + 1)-edge coloring of
the entire graph G = (V,E). We now focus on analyzing the runtime of this algorithm. We first
recall that each vertex v ∈ V is sampled into U⋆ with probability (κ log n)/∆. Thus, by standard
Chernoff bounds we have the following guarantees w.h.p.

|U⋆| = Õ(n/∆), and hence |E⋆| ≤ |U⋆|∆ = Õ(n). (2)

We have already observed that it takes Õ(m) time to compute the partial coloring χ. Given χ,
Corollary 3.1 allows us to obtain the partial coloring χ′′ in expected time Õ(|E⋆|∆ + ∆m|U⋆|/L) =
Õ(n∆+mn/L) = Õ(m+n2∆/L). The first equality holds because of (2), and the second inequality
holds because we have assumed that the input graph is almost regular. Accordingly, the overall
runtime of the algorithm depends on whether we are in Case (i) or Case (ii), as follows.

If we are in Case (i), then the total expected runtime of the algorithm is given by T := Õ(m) +
Õ(m + n2∆/L) + O(nL). Setting L =

√
n∆, we get

T = Õ(m + n
√
n∆) = Õ(m + n∆

√
n/∆) = Õ(m

√
n/∆) = Õ

(
mn(γ−1)/(2γ)

)
,

where the last inequality holds because ∆γ > n (which implies that 1/∆ < 1/n1/γ).
In contrast, if we are in Case (ii), then the total expected runtime of the algorithm is given by

T := Õ(m) + Õ(m + n2∆/L) + Õ(∆γL). Setting L = n/∆(γ−1)/2, we get

T = Õ
(
m + n∆(γ+1)/2

)
= Õ

(
m + n∆ ·∆(γ−1)/2

)
= Õ

(
m∆(γ−1)/2

)
= Õ

(
mn(γ−1)/(2γ)

)
.

where the last inequality holds because ∆γ ≤ n. This concludes the proof (sketch) of Lemma 2.3.

4 Proof (Sketch) of Theorem 2.4

We define the parameters:

ℓ := 100 log n, L := 103ℓ2(∆2 +
√

∆n) (3)

To convey the main conceptual ideas behind our analysis, in this section we will explain the proof of
Theorem 2.4 under Assumption 4.1, stated below. This assumption clearly holds, for example, on
bipartite graphs. For those readers familiar with the proof of Vizing’s theorem, this assumption will
allow us to ignore the Vizing fans altogether, and we will be able to focus only on the alternating
paths, which are more intuitive to reason about.

Assumption 4.1. The graph G = (V,E) does not contain any odd cycle of length ≤ 2L + 3.

In Section 4.1, we introduce some key notations and terminologies regarding alternating paths.
Next, we describe our randomized algorithm in Section 4.2. In Section 4.3, we introduce a recursion
tree (which we refer to as the “meta-tree”) which encodes all possible execution-paths of our
algorithm, and present a few basic properties of this meta-tree. We show that our algorithm
essentially performs a random walk on this meta-tree, and state Lemma 4.2 which guarantees
that this random walk terminates quickly. We prove Lemma 4.2, which implies Theorem 2.4,
in Section 4.4. Finally, we conclude our discussion in Section 4.5 by pointing out the remaining
significant technical challenges that we need to overcome, if we are to get rid of Assumption 4.1.
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4.1 Preliminaries

Alternating Paths and Types: Consider a partial (∆ + 1)-edge coloring χ : E → [∆ + 1]∪ {⊥}
in the input graph G = (V,E). Consider a path P = ((v0, v1), (v1, v2), . . . , (vk−1, vk)) in G, where
(vi−1, vi) ∈ E is the ith edge on the path, for all i ∈ [k]. We say that P is an alternating path
(w.r.t. χ) iff there exist two distinct colors c, c′ ∈ [∆ + 1] that satisfy the following conditions.

1. The colors on the consecutive edges of P alternate between c and c′. Specifically, this means
that χ(vi−1, vi) ∈ {c, c′} for all i ∈ [k], and χ(vi−1, vi) ̸= χ(vi, vi+1) for all i ∈ [k − 1].

2. The path P is maximal. Thus, for each vertex u ∈ {v0, vk}, either c ∈ missχ(u) or c′ ∈
missχ(u), where missχ(u) ⊆ [∆+1] denotes the set of missing colors at u under χ (i.e., these
are the colors that are not assigned to any edge in G incident on u).

Let τ = {c, c′}. We refer to τ as being the type of the alternating path P . We let length(P ) = k
denote the length of the path P . We also say that the path P starts at v0 and ends at vk. For
i ∈ [k], we let P≤i = ((v0, v1), (v1, v2), . . . , (vi−1, vi)) denote the length-i prefix of P . For i > k, we
let P≤i := P . Finally, note that an alternating path always comes with an associated orientation.
In particular, there is another alternating path with the same set of edges as P , but in reverse
order.

Our algorithm in Section 4.2 will use two basic subroutines, as described below.

The Subroutine Apply(χ, e, P ): Here, the input is a partial (∆ + 1)-edge coloring χ of G, an
uncolored edge e = (u, v) and an alternating path P starting from u that is of type τ = {αu, αv},
where αu ∈ missχ(u) \ missχ(v) and αv ∈ missχ(v) \ missχ(u). (If either αu ∈ missχ(u)∩missχ(v)
or αv ∈ missχ(u) ∩ missχ(v), our algorithm will not make the call Apply(χ, e, P ).) Crucially, it is
guaranteed that length(P ) ≤ 2L + 2. W.l.o.g., suppose that P = ((v0, v1), (v1, v2), . . . , (vk−1, vk)),
where k = length(P ) and v0 = u, and let ck = χ(vk−1, vk) ∈ {αu, αv}. It is easy to verify that
under Assumption 4.1, we have vk ̸= v, for otherwise the path P along with the edge (u, v) would
create an odd cycle of length ≤ 2L + 3. The subroutine updates the coloring χ as follows.

• χ(vi−1, vi)← χ(vi, vi+1) for all i ∈ [k − 1].

• χ(vk−1, vk)← c, where c is the unique color in {αu, αv} \ {ck}.

• χ(u, v)← αv.

At the end of the above operations, the partial coloring χ gets extended to the edge e. The
subroutine returns the updated partial coloring. In summary, the subroutine applies the alternating
path P to extend the partial coloring to e.

The Subroutine Shift(χ, e, P≤i): Here, the input is a partial (∆ + 1)-edge coloring χ of G, an
uncolored edge e = (u, v) and a length-i prefix P≤i of an alternating path P starting from u
that is of type τ = {αu, αv}, where αu ∈ missχ(u) \ missχ(v) and αv ∈ missχ(v) \ missχ(u).
(If either αu ∈ missχ(u) ∩ missχ(v) or αv ∈ missχ(u) ∩ missχ(v), our algorithm will not make
the call Shift(χ, e, P≤i).) Crucially, we are also guaranteed that i ≤ 2L + 2. W.l.o.g., let P≤i =
((v0, v1), (v1, v2), . . . , (vi−1, vi)), where v0 = u. Due to Assumption 4.1, it is again easy to verify
that vi ̸= v. The subroutine updates χ as follows.

• χ(vj−1, vj)← χ(vj , vj+1) for all j ∈ [i− 1].

• χ(vi−1, vi)← ⊥.

8



• χ(u, v)← αv.

At the end of the above operations, in the partial coloring χ the position of the uncolored edge gets
shifted from e to (vi−1, vi). The subroutine returns the updated coloring.

4.2 Our Algorithm

We have a graph G = (V,E), and a partial (∆ + 1)-edge coloring χ of G with one uncolored edge
e = (u, v). We need to extend χ to e. We do this by identifying two colors cu ∈ [∆ + 1] \missχ(u)
and cv ∈ [∆ + 1] \missχ(v), and then calling Algorithm 1 with input (G,χ, e = (u, v), {cu, cv}).

While parsing the pseudocode of Algorithm 1, the reader should think of cu and cv as blocking
colors. The algorithm considers an alternating path P starting from u, such that the type of this
alternating path, given by {αu, αv}, is disjoint from {cu, cv}. Note that it is always possible to find
such a type, for the following reason. Since u has degree at most ∆ in G and the edge e = (u, v) is
currently uncolored, we have |missχ(u)| ≥ (∆ + 1)− (∆− 1) = 2. As cu /∈ missχ(u), it must be the
case that missχ(u)\{cu, cv} ≠ ∅, and so there exists an appropriate color αu that we can pick from
missχ(u) \ {cu, cv}. A similar argument holds for αv. Also, by induction, it is easy to verify that
all future recursive calls to the algorithm will continue to satisfy the same property with regard to
the blocking colors. Specifically, if the algorithm is called with input (G,χ, (u′, v′), {c1, c2}), then
missχ(w) ∩ {c1, c2} ̸= ∅ for each w ∈ {u′, v′}. The reason for having these blocking colors will
become apparent later on (see Observation 4.3 and the proof of Lemma 4.4).

Algorithm 1: ExtendColoring(G,χ, e = (u, v), {cu, cv})
1 Find two colors αu ∈ missχ(u) \ {cu, cv} and αv ∈ missχ(v) \ {cu, cv}
2 if ∃c ∈ {αu, αv} such that c ∈ missχ(u) ∩missχ(v) then
3 χ(u, v)← c
4 return χ

5 Let P := (e1, . . . , ek) be the {αu, αv}-alternating path in G (w.r.t. χ) starting from u
6 if k ≤ 2L + 2 then
7 χ← Apply(χ, e, P )
8 return χ

9 else
10 Sample i ∈ {1, . . . , L} independently and u.a.r.
11 Let P≤i = (e1, . . . , ei) denote the prefix of P consisting of its first i edges
12 χ← Shift(χ, e, P≤i)
13 ExtendColoring(G,χ, ei, {αu, αv})

The remainder of Algorithm 1 is very natural and intuitive. If there exists some color c ∈ {αu, αv}
that is missing both at u and v, then the algorithm simply assigns the color c to e, and terminates.
Otherwise, if the length of the alternating path P is at most 2L + 2, then it extends the partial
coloring to e by applying the alternating path, and terminates. Finally, if length(P ) > 2L + 2,
then it picks some i ∈ [L] u.a.r., shifts the position of the uncolored edge from e to the ith edge on
P , and makes a recursive call to itself.

4.3 The Meta-Tree

We now define a (possibly infinite) tree T that captures all possible execution paths taken by our
recursive algorithm, on a given input. To clearly distinguish it from the input graph G, we refer to
T as a meta-tree and its vertices as meta-nodes. We next introduce some key notations.
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The meta-tree T is rooted at a meta-node r. We let V (T ) denote the set of all meta-nodes in
T . Every meta-node x ∈ V (T ) corresponds to a recursive call of Algorithm 1, and the root-to-leaf
path from r to x in T corresponds to the execution of our recursive algorithm leading to this call.9

For each such meta-node x, we denote the state of an entity Φ at the start of the corresponding
call of Algorithm 1 by Φ(x). For example, we use the symbols χ(x), P (x) and τ (x) respectively to
denote the following entities at the start of the concerned call of Algorithm 1: (i) the current partial
coloring χ, (ii) the alternating path P (see Line 5 of Algorithm 1) and (iii) the type {αu, αv} of the
path P (see Line 5 of Algorithm 1).

If a meta-node x is not a leaf in T , then it has exactly L children, one for each choice of i ∈ [L]
in Line 10 of Algorithm 1. In contrast, a meta-node x is a leaf in T iff the corresponding call of
Algorithm 1 terminates at either Line 4 or Line 8. We will refer to the leaves in T as terminals.

Random Walks in T : An execution of our algorithm defines a random walk on T that starts
at the root and, at each step, independently and uniformly samples a random child of the current
meta-node. The random walk ends when, and if, it reaches a terminal meta-node: At that point
the algorithm succeeds in extending the initial partial coloring χ to the uncolored edge given to it
as part of the input. Using standard data structures, it is easy to ensure that the algorithm spends
Õ(L) time at each meta-node it visits during this random walk, because the colors of at most O(L)
edges get changed during any given call of Algorithm 1. Since L = Õ(∆2 +

√
∆n), Theorem 2.4

follows from Lemma 4.2 and standard tools for boosting the success probability of a randomized
algorithm. We derive some basic properties of the meta-tree in Section 4.3.1. Subsequently, we use
these properties to prove Lemma 4.2 in Section 4.4.

Lemma 4.2. With probability Ω(1/ log n), the random walk on T executed by our algorithm ends
at a terminal vertex that lies within depth O(log n) from the root r.

4.3.1 Basic Properties of the Meta-Tree

Recall that τ (x) denotes the type of the alternating path P (x) at a meta-node x. Consider a non-
terminal meta-node x at depth = k (say), and suppose that (x0, x1, . . . , xk) is the unique path
in T from the root to x (i.e., r = x0 and x = xk). We say that the meta-node x is dirty iff
τ (x) ∩

(
τ (x0) ∪ · · · ∪ τ (xk−1)

)
̸= ∅, and clean otherwise. We also say that x is contaminated iff at

least L/(10ℓ) of its children are dirty. Note that a contaminated meta-node itself might be clean.

Remark: We emphasize that according to our definitions only the non-leaf meta-nodes are classified
as being either clean or dirty. Thus, the set of meta-nodes is partitioned into three subsets: terminal,
dirty and clean. Furthermore, a subset of non-terminal meta-nodes are contaminated. This implies
that some of the contaminated meta-nodes are clean, the rest being dirty.

We next derive a few key properties that will be useful in proving Lemma 4.2 later on.

Observation 4.3. Consider any non-terminal meta-node x ∈ V (T ), and let y be any child of x.
If y is not a terminal, then we must have τ (x) ∩ τ (y) = ∅.

Proof. Follows from Line 1 and Line 13 of Algorithm 1.

Lemma 4.4. Consider any contaminated meta-node x ∈ V (T ) at a depth ≤ ℓ in the meta-tree T .
Then at least L/(40ℓ) many children of x are terminal meta-nodes.

9While giving the full proof in Section 8, we formulate our algorithm iteratively instead of recursively and refer
to iterations instead of calls.
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Proof. Let (x0, x1, . . . , xk) denote the unique path from the root to x in T , with r = x0 and x = xk.
Thus, at most 2(k+1) ≤ 2(ℓ+1) ≤ 4ℓ distinct colors appear in the set τ (x0)∪τ (x1)∪· · ·∪τ (xk) = C⋆
(say); because |τ (xi)| = 2 for all i ∈ [k]. Let K⋆ := {τ ∈

(
[∆+1]

2

)
: τ ∩ C⋆ ̸= ∅} denote the collection

of types with at least one color from C⋆. Note that |K⋆| ≤ |C⋆|(∆ + 1) ≤ 4ℓ(∆ + 1) ≤ 8ℓ∆. Let D
denote the set of dirty children of x. By definition, for each meta-node y ∈ D, we have τ (y) ∈ K⋆.
Furthermore, since x is contaminated, it follows that |D| ≥ L/(10ℓ).

Say that a meta-node is trivial iff the corresponding call of Algorithm 1 ends at Line 4. Thus,
every trivial meta-node is terminal, but not vice versa. Let Dt ⊆ D denote the set of trivial meta-
nodes that belong to D. If at least half of the meta-nodes in D are trivial, then |Dt| ≥ |D|/2 ≥
L/(20ℓ), and the lemma follows. Thus, for the rest of the proof we assume that:

|D \Dt| ≥ |D|/2 ≥ L/(20ℓ). (4)

Since τ (y) ∩ τ (x) = ∅ for all y ∈ D \ Dt (see Observation 4.3), all the alternating paths in the
collection P ′ := {P (y)}y∈D\Dt

exist simultaneously in the graph G w.r.t. the partial (∆ + 1)-edge

coloring χ(x). To be more precise, this means that for every meta-node y ∈ D \ Dt and every
edge e ∈ P (y), we have χ(y)(e) = χ(x)(e). Furthermore, we have already inferred that each path
P (y) ∈ P ′ is of a type τ (y) ∈ K⋆. Next, note that the total length of all possible alternating paths
of a given type (w.r.t. a specific partial coloring) is at most 2n. This holds because such paths are
vertex-disjoint, except the same path being possibly counted twice from two opposite directions.
Thus, we have

∑
P∈P ′ length(P ) ≤ 2n|K⋆| ≤ 16ℓ∆n. Hence, the average length of an alternating

path P (y) ∈ P ′ is at most 16ℓ∆n/|P ′| = 16ℓ∆n/|D \Dt| ≤ 320ℓ2∆n/L ≤ L, where the second-last
inequality follows from (4) and the last inequality10 follows from (3). This implies that at least
half of the alternating paths in P ′ have length at most 2L. So, at least half of the meta-nodes
y ∈ D \Dt have length

(
P (y)

)
≤ 2L; and such meta-nodes are terminals. We therefore conclude

that at least |D \Dt|/2 ≥ L/(40ℓ) children of x are terminal meta-nodes.

We say that a meta-node x ∈ V (T ) is congenitally clean iff every ancestor of x, along with x
itself, is clean. Next, consider any meta-node x ∈ V (T ) at depth (say) k in T . Let (x0, x1, . . . , xk)
denote the unique path from the root to x in T , with r = x0 and x = xk. Then we refer to the
ordered tuple of types

(
τ (x0), τ (x1), . . . , τ (xk)

)
as the transcript of x. We now upper bound the

number of congenitally clean vertices with the same transcript.

Lemma 4.5. Let τ0, . . . , τi be a sequence of types. Then there can be at most n congenitally clean
meta-nodes with transcript = (τ0, . . . , τi).

Proof. For j ∈ [0, i], let Γj ⊆ V (T ) denote the set of congenitally clean meta-nodes with transcript
= (τ0, . . . , τj). Note that every meta-node in Γj is at depth = j in T .

Claim 4.6. For all j ∈ [0, i], the collection
{
P

(x)
≤L

}
x∈Γj

of length-L prefixes are vertex-disjoint.

Setting j = i in Claim 4.6, it follows that the size of the set Γi is at most the maximum possible
number of vertex-disjoint paths in the input graph G, which in turn, is at most n. This implies the
lemma. Accordingly, from now on we focus on proving Claim 4.6.

We will prove Claim 4.6 via induction on j. Since Γ0 = {r}, the claim trivially holds if j = 0.
By induction hypothesis, we now assume that there exists an index j⋆ ∈ [0, i − 1] such that the
claim holds for all j ≤ j⋆. Under this assumption, we will show that the claim holds for j = j⋆ + 1.

10This is the only place in our analysis where we require L to be Ω̃(
√
∆n).
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If there is a color that appears more than once across the types τ0, . . . , τj⋆+1, then a meta-node
with the transcript (τ0, . . . , τj⋆+1) is not congenitally clean, and so Γj = ∅ for all j ∈ [j⋆ + 1, i].
Henceforth, we assume that the types τ0, . . . , τj⋆+1 are mutually disjoint.

Consider any two distinct meta-nodes x, y ∈ Γj⋆+1. Let u(x) and u(y) respectively denote the
starting points of the alternating paths P (x) and P (y). Our induction hypothesis implies that
u(x) ̸= u(y). Since the types τ0, . . . , τj⋆+1 are mutually disjoint, both the alternating paths P (x) and
P (y) exist simultaneously in G w.r.t. the initial partial coloring χ(r). In other words, either they
are two completely disjoint type-τj⋆+1 alternating paths in G w.r.t. χ(r), or essentially the same
path (with the same set of edges) but with a different orientation. In the first case, their length-L

prefixes P
(x)
≤L and P

(y)
≤L are clearly vertex-disjoint. In the second case, we note that x and y are

not terminal meta-nodes (because every meta-node in Γj⋆+1 is congenitally clean, by definition);

hence both P (x) and P (y) have length ≥ 2L+ 2, and so P
(x)
≤L and P

(y)
≤L are also vertex-disjoint. This

concludes the proof of the claim.

4.4 Analyzing the Random Walk on the Meta-Tree: Proof of Lemma 4.2

Our analysis will crucially rely on the behavior of the random walk within a certain critical subtree
T ⋆ of T . We define this critical subtree below, and then summarize a few of its key properties.

The “critical subtree” T ⋆ is obtained by starting with T , and then deleting every meta-node
x ∈ V (T ) that satisfies at least one of the following conditions: (i) x has a dirty ancestor in
T , (ii) x has a contaminated ancestor in T , and (iii) x is at a depth strictly greater than ℓ in
T . We let V (T ⋆) ⊆ V (T ) denote the set of meta-nodes in the critical subtree.

Note that if the root r is itself a terminal, then Lemma 4.2 trivially holds because the random walk
ends at r. Thus, for the rest of the proof we assume that the root r is not a terminal.

Observation 4.7. T ⋆ is a connected subtree of T , rooted at r, and r is not a leaf in T ⋆. Also, for
every x ∈ V (T ) \ V (T ⋆), the unique path in T from r to x passes through some leaf in T ⋆.

Proof. Since the r is at depth 0 and does not have any ancestor, it belongs to T ⋆. Furthermore,
we have assumed that r is not a terminal. This implies that, by definition, r is a congenitally clean
meta-node. So all the children of r are part of T ⋆, and hence r is not a leaf in T ⋆.

Next, note that if a meta-node x is in T ⋆, then each of its siblings and each of its ancestors is
also in T ⋆. This implies the observation.

Observation 4.8. Every non-leaf meta-node in T ⋆ is congenitally clean and not contaminated.

Proof. Consider any meta-node x ∈ V (T ⋆). If x is terminal, then it is a leaf in T itself, and hence
also a leaf in T ⋆. In contrast, if x is either contaminated or dirty, then it cannot have any descendant
in T ⋆. Thus, for x to be a non-leaf meta-node in T ⋆, it must be clean and not contaminated. Since
we can infer the same for every ancestor of x, the observation follows.

The above observations help us gain an intuitive understanding of the critical subtree T ⋆. Define
the core (resp. boundary) of T ⋆ to be the set of its non-leaf (resp. leaf) meta-nodes. Every meta-
node within the core is congenitally clean and not contaminated (see Observation 4.8). The random
walk on T undertaken by our algorithm starts at the root r, which is part of the core of T ⋆ (see
Observation 4.7). For a certain number of steps the random walk stays within the core. After
that, at some point in time the random walk exits the core by reaching a meta-node (say) x at the
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boundary of T ⋆ (see Observation 4.7). If x is terminal, then the random walk ends at x. Otherwise,
it ventures out of V (T ⋆) in the subsequent step, and never comes back to V (T ⋆) in future.

The above discussion also implies that for every meta-node x ∈ V (T ⋆), its depth in T ⋆ is the
same as its depth in T . Accordingly, from this point onward we will use the phrase “the depth of
a meta-node” without explicitly referring to the underlying meta-tree.

Observation 4.9. Let Z⋆ denote the set of leaves in T ⋆. Then Z⋆ is partitioned into four subsets:

• Z⋆
t := {x ∈ Z⋆ : x is terminal}.

• Z⋆
cc-cont := {x ∈ Z⋆ : x is congenitally clean and contaminated}.

• Z⋆
cc-not-cont := {x ∈ Z⋆ : x is congenitally clean and not contaminated}.

• Z⋆
d := {x ∈ Z⋆ : x is dirty}.

Proof. This holds because the set of meta-nodes is partitioned into three substes: terminal, clean
and dirty. Finally, every clean meta-node in T ⋆ is congenitally clean, because it cannot have any
dirty ancestor.

Corollary 4.10. Let E⋆d , E⋆t , E⋆cc-cont and E⋆cc-not-cont respectively denote the events that the random
walk undertaken by our algorithm reaches a meta-node in Z⋆

d ,Z⋆
t ,Z⋆

cc-cont and Z⋆
cc-not-cont. These

four events are mutually exclusive and exhaustive, and hence:

Pr [E⋆d ] + Pr [E⋆t ] + Pr [E⋆cc-cont] + Pr [E⋆cc-not-cont] = 1.

Proof. Follows from Observation 4.7 and Observation 4.9.

Observation 4.11. Every meta-node in Z⋆
cc-not-cont is at depth ℓ.

Proof. Consider any meta-node x ∈ Z⋆
cc-not-cont. By definition, the depth of x is no more than ℓ.

Suppose that x is at a depth (say) k < ℓ. Since x is clean, it has L children in the meta-tree T .
Let y be any child of x in T . Since x is congenitally clean, y does not have any dirty ancestor.

Also, since x is not contaminated, y cannot have any contaminated ancestor; for otherwise x itself
would have had the same contaminated ancestor and so x would not be part of T ⋆. Finally, the
meta-node y is at depth = k + 1 ≤ ℓ. We therefore conclude that y is part of T ⋆. But this
contradicts our assumption that x is a leaf in T ⋆. So, the meta-node x must be at depth k = ℓ.

Armed with these basic observations about the critical subtree, we are now ready to prove
Lemma 4.2. Our strategy will be to show that the event E⋆cc-cont ∪ E⋆t occurs with constant proba-
bility, and conditioned on this event, the random walk ends within O(log n) steps with probability
Ω(1/ log n).

Claim 4.12. We have Pr [E⋆cc-not-cont] ≤ 1/10.

Proof. By Observation 4.11, every meta-node x ∈ Z⋆
cc-not-cont is at depth ℓ. As there are

(
∆+1
2

)
≤

∆2 possible types, the meta-nodes at depth ℓ have at most (∆2)ℓ+1 = ∆2(ℓ+1) possible transcripts.
For each transcript, there are at most n meta-nodes in Z⋆

cc-not-cont (see Lemma 4.5). Thus, we get:

|Z⋆
cc-not-cont| ≤ ∆2(ℓ+1)n.

Next, consider any meta-node x ∈ Z⋆
cc-not-cont, and let (x0, x1, . . . , xℓ) be the unique path from

the root r to x in T (and in T ⋆
ℓ ), with r = x0 and x = xℓ. By our construction of the meta-tree T ,
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every internal meta-node on this path has exactly L children in T . Thus, the random walk taken
by our algorithm traverses this path (and ends up at x) with probability 1/Lℓ. Summing these
probabilities over all x ∈ Z⋆

cc-not-cont, we get:

Pr [E⋆cc-not-cont] ≤ |Z⋆
cc-not-cont| · (1/Lℓ) ≤ ∆2(ℓ+1)n/Lℓ < 1/10,

where the last inequality follows from (3).

Claim 4.13. We have Pr [E⋆d ] ≤ 1/5.

Proof. Consider any i ∈ [0, ℓ−1]. Let Ei denote the event that after i recursive calls of Algorithm 1,
the concerned random walk is at a meta-node (say) xi that belongs to the core of T ⋆, and as a
corollary, the event E⋆d has not yet taken place. By Observation 4.7, we have:

Pr[E0] = 1. (5)

We will next prove the following inequality.

Pr
[
E⋆d ∪ Ei+1

∣∣ Ei ] ≥ 1− 1

10ℓ
for all i ∈ [0, ℓ− 1]. (6)

Towards this end, fix any i ∈ [0, ℓ− 1], and condition on the event Ei. Since xi is part of the core of
T ⋆, it is congenitally clean and not contaminated (see Observation 4.8). Thus, the meta-node xi
has L children in T and at most L/(10ℓ) of these children are dirty. Accordingly, with probability
at least 1− 1/(10ℓ), in the very next step the random walk moves on to a non-dirty child (say) y of
x. Such a non-dirty child y is either: (1) terminal, or (2) congenitally clean and contaminated, or
(3) congenitally clean and not contaminated. In the former two cases, we are guaranteed that the
event E⋆d cannot occur, because the event E⋆t ∪E⋆cc-cont has already taken place and this is mutually
exclusive with the event E⋆d (see Corollary 4.10). We next consider the third case. Here, if i < ℓ−1,
then meta-node y is still within the core of T ⋆, and hence the event Ei+1 has occurred. Otherwise,
if i = ℓ − 1, then the event E⋆cc-not-cont has occurred which again is mutually exclusive with the
event E⋆d (see Corollary 4.10). This concludes the proof of inequality (6).

From (5) and (6), we infer that Pr
[
E⋆d
]
≥ (1 − 1/(10ℓ))ℓ ≥ 4/5. Thus, we get Pr [ E⋆d ] =

1− Pr
[
E⋆d
]
≤ 1/5.

Corollary 4.14. We have Pr [E⋆t ] + Pr [E⋆cc-cont] ≥ 7/10.

Proof. Follows from Corollary 4.10, Claim 4.12 and Claim 4.13.

Let E⋆ denote the event that the random walk taken by our algorithm ends at a terminal meta-
node at a depth ≤ ℓ + 1. It is trivial to note that Pr [E⋆|E⋆t ] = 1. Henceforth, we condition on the
event E⋆cc-cont. This means that the concerned random walk has reached some contaminated and
congenitally clean meta-node x (say) at depth ≤ ℓ. The meta-node x has L children in T , and by
Lemma 4.4 at least 1/(40ℓ)-fraction of its children are terminal. Thus, with probability at least
1/(40ℓ), in the very next step the random walk moves on to a terminal child of x, at depth ≤ ℓ+ 1.
To summarize, we deduce that Pr [E⋆|E⋆t ∪ E⋆cc-cont] ≥ 1/(40ℓ). Lemma 4.2 now follows from (3)
and Corollary 4.14.
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4.5 Getting Rid of Assumption 4.1: The Major Technical Hurdles

If we remove Assumption 4.1, our algorithm might now fail if, given an uncolored edge e = (u, v),
it finds a sufficiently short alternating path P starting at u and ending at v. In this case, our
algorithm runs Apply(χ, e, P ), but since P has both u and v as endpoints, this does not produce a
proper coloring. In order to deal with this case, we need to use Vizing fans in order to construct
this alternating path P . In addition to making the algorithm more technical, this leads to the
following two major hurdles that we need to overcome.

Hurdle 1: Let x and y be two distinct congenitally clean meta-nodes with the same transcript

(τ0, . . . , τi). Previously, by Claim 4.6, we had that the paths P
(x)
≤L and P

(y)
≤L were vertex-disjoint.

However, this is no longer necessarily the case. Every time we construct a fan around some vertex
u, we make changes to the colors of the edges around u, even if they have colors that are not
contained in any of the types of the alternating paths that have been used so far. Thus, the
alternating path P (x) of some congenitally clean meta-node x might not be a maximal alternating
path in the original coloring χ(r). We say that such a meta-node x is damaged. Since each fan only
changes the colors of at most ∆ edges, each of which is contained in at most O(∆) alternating paths,
and our algorithm only runs for Õ(1) steps, we can argue that each meta-node has at most Õ(∆2)
many damaged children. By taking L to be sufficiently large, we can ensure that (with probability
Ω(1)) we do not encounter any damaged meta-nodes in a random walk (see Lemma 8.7).

Hurdle 2: Let e = (u, v) be an uncolored edge and cu ∈ missχ(u), cv ∈ missχ(v) be blocking colors.
Previously, our algorithm always found an alternating path P starting at u that did not use either
cu or cv. The ability to find an alternating path that can avoid such blocking colors is crucial for
the proof of Lemma 4.4. However, if we use Vizing fans to find alternating paths, then we can
no longer guarantee that we can avoid using these blocking colors. In the case that we cannot
avoid these blocking colors, we use a modified Vizing fan construction to find a {cu, cv}-alternating
path that does not start at either u or v (see Lemma 8.3). Similarly to Lemma 4.4, we consider a
different case where an Ω(1/ℓ)-fraction of the children of a meta-node have this property. In this
situation, we can guarantee that Ω(L/ℓ) of the alternating paths corresponding to these children
must be vertex-disjoint, and thus have an average length of Õ(

√
∆n), leading to Ω(L/ℓ) many of

these children being terminal.

In Section 8, we give the complete proof of Theorem 2.4 without Assumption 4.1.
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Part II

Full Version

In this part of the paper, we provide the full proof of Theorem 1.1, which we restate at the start
of Section 7. In Section 5, we define the basic notations used throughout the rest of the paper. In
Section 6, we describe the main algorithmic components that we use to construct our algorithm. In
Section 7, we describe and analyse our algorithm. Finally, in Sections 8 and 9, we prove Theorem 6.4
and Lemma 6.1 respectively.

We note that this part of the paper is fully self-contained and uses slightly different terminology
and notation than the extended abstract.

5 Basic Notations

Let G = (V,E) be an undirected simple graph on n vertices and m edges with maximum vertex
degree ∆. For any partial (∆+1)-edge coloring χ of G = (V,E), we say that a neighbor v of vertex
u is a colored neighbor (respectively, uncolored neighbor) of u if χ(u, v) ̸= ⊥ (resp., χ(u, v) = ⊥).
For any vertex u ∈ V , let missχ(u) ⊆ [∆ + 1] be the set of colors which are not used around u by χ.
Let Nχ(u) denote the set of all colored neighbors of u in G. We use degχG(u) to denote the number
of uncolored edges incident on u w.r.t. χ. For any pair of different colors {x, y}, a simple path P
between two endpoints s, t is an {x, y}-alternating path under χ, if all edges on P are colored either
x or y; plus, P is maximal if {x, y} ∩missχ(s) ̸= ∅ and {x, y} ∩missχ(t) ̸= ∅.

6 The Algorithmic Components

In this section, we describe the subroutines that we use to construct our algorithm.

6.1 Coloring Stars

We prove the following lemma following the basic ideas from the recent work of [BCC+24]. The
proof of this lemma hinges on the same key technical observations but with a simpler algorithm
and better runtime bound, whose full proof is deferred to Section 9.

Lemma 6.1. There is an algorithm ColorLightStars that, given a graph G, a partial (∆+1)-edge
coloring χ of G and subset U⋆ ⊆ V such that:

• |missχ(u)| ≥ d for all u ∈ U⋆ for some positive integer d ∈ N,

• there are λ uncolored edges incident on U⋆,

extends the coloring χ to Ω(λ) uncolored edges incident on U⋆ in Õ(λ∆ + ∆m/d) expected time.

Remark. As mentioned in the technical overview of Section 2, previously in [BCC+24], the run-
time bound for the same task is Õ

(
λ∆ + minτ≥1{∆mτ

d + λn
τ }
)
, which is always worse than the

time bound of Lemma 6.1. To clarify, note that in the technical overview of [BCC+24], the authors
claimed the same runtime bound Õ(λ∆ + ∆m/d) in their Lemma 2.1 as we claim in the current
paper (see Corollary 6.2, which we derive from Lemma 6.1), but their Lemma 2.1 was only given
as part of an informal technical overview, provided merely for the sake of conveying the high-level
ideas. What [BCC+24] actually achieved implicitly (in the formal part of their paper) is the weaker
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runtime bound of Õ
(
λ∆ + minτ≥1{∆mτ

d + λn
τ }
)
, which was sufficient for their Õ(mn1/3) time al-

gorithm, but it is insufficient for our goal of achieving a runtime of Õ(mn1/4).

In our final algorithm, we use ColorLightStars to extend the coloring χ to vertices with sufficiently
low degree. To deal with high degree vertices, we also need a variant of the algorithm that we call
ColorHeavyStars, which follows as a corollary from Lemma 6.1.

Corollary 6.2. There is an algorithm ColorHeavyStars that, given a graph G, a partial ∆+1 edge
coloring χ of G and subset U⋆ ⊆ V such that there are λ uncolored edges incident on U⋆, extends
the coloring χ to Ω(λ) uncolored edges incident on U⋆ in Õ(λ∆ + ∆m|U⋆|/λ) expected time.

Proof. For each integer p, let U⋆
p := {u ∈ V | degχG(u) ∈ [2p, 2p+1)}.11 Let p ∈ N be the value

that maximizes
∑

u∈U⋆
p

degχG(u)2. Let λ′ denote the number of uncolored edges incident on U⋆
p and

d = 2p. Then it follows that

λ′ · 2d =
∑
u∈U⋆

p

degχG(u) · 2d ≥
∑
u∈U⋆

p

degχG(u)2 ≥ 1

log n
·
∑
u∈U⋆

degχG(u)2

≥ 1

log n
·

(
1√
|U⋆|

·
∑
u∈U⋆

degχG(u)

)2

=
1

log n
· λ2

|U⋆|
, (7)

where the last inequality follows from the Cauchy-Schwarz inequality. It follows that λ2/(λ′|U⋆|) ≤
d · 2 log n. The set U⋆

p has the properties that

1. |missχ(u)| ≥ d for all u ∈ U⋆
p ,

2. there are λ′ uncolored edges incident on U⋆
p .

Thus, applying the algorithm ColorLightStars (Lemma 6.1) with the set U⋆
p , we can color Ω(λ′)

uncolored edges incident on U⋆
p in expected time

Õ

(
λ′∆ +

∆m

d

)
≤ Õ

(
λ′∆ +

∆m|U⋆|
λ

· λ
′

λ

)
≤ Õ

(
λ∆ +

∆m|U⋆|
λ

)
· λ

′

λ
. (8)

We can repeat this process until the total number of edges to which we have extended the coloring
exceeds λ/2. Let λi denote the number of uncolored edges at the start of the i iteration and let
λ′
i denote the number of edges that we extend the coloring to in the ith iteration. Suppose that

we perform t iterations in total. Then, for all i ∈ [t], we have that λ/2 ≤ λi ≤ λ. It follows from
Equation (8) that the expected total running time of our algorithm is at most

t∑
i=1

Õ

(
λi∆ +

∆m|U⋆|
λi

)
· λ

′
i

λi
≤ Õ

(
λ∆ +

∆m|U⋆|
λ

)
·

(
1

λ
·

t∑
i=1

λ′
i

)
≤ Õ

(
λ∆ +

∆m|U⋆|
λ

)
.

Thus, the expected total time spent handling these calls to ColorLightStars is upper bounded by
Õ(λ∆ + ∆m|U⋆|/λ).

6.2 Near-Vizing Coloring

The following theorem is the main technical result in the recent work of [Ass24]. While this is
not strictly necessary to prove Theorem 6.3, it significantly simplifies the technical details of our
algorithm by allowing us to avoid using Euler partitioning and recursion.

Theorem 6.3. There is an algorithm NearVizingColoring that, given a graph G, computes a
∆ + 300 log n edge coloring χ of G in Õ(m) time with high probability.

11Recall that degχG(u) denotes the number of uncolored edges incident on u w.r.t. χ.
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6.3 Color Extension Theorem

The following theorem is our main technical contribution. This theorem is a generalization of the
results of [DHZ19] to the case where we only have access to ∆ + 1 colors instead of ∆ + Ω̃(

√
∆).

We defer the proof of this theorem to Section 8.

Theorem 6.4. There is an algorithm FastVizingExtension that, given a graph G, a partial
∆ + 1 edge coloring χ of G and an uncolored edge e, extends the coloring χ to the edge e in
Õ(min{∆2 +

√
∆n, n}) expected time.

7 Our Algorithm

In this section, we prove Theorem 1.1, which we restate below.

Theorem 7.1 (Theorem 1.1 Restated). Given a simple, undirected m-edge n-node graph G =
(V,E) with maximum degree ∆, we can compute a (∆ + 1)-edge coloring of G in Õ(mn1/4) time
with high probability.

Let G = (V,E) be a graph with maximum degree ∆. We assume that ∆ ≥ κn1/4 log n, where
κ := 104 is a constant. Otherwise, we can use the Õ(m∆) time algorithm of [Sin19] to ∆ + 1
edge color G in Õ(mn1/4) time. Let Vlo := {u ∈ V | degG(u) ≤ ∆/2} be the low degree nodes,
Vhi := V \ Vlo be the high degree nodes, nlo := |Vlo| and nhi := |Vhi|. Given the graph G, we now
describe how our algorithm computes a (∆ + 1)-edge coloring χ of the graph G in 2 phases.

Phase 1: Extracting Stars

Our algorithm begins by finding a subset U ⊆ V that satisfies the following:

(I) ∆(G[V \ U ]) ≤ ∆− 300 log n, (II) |Uhi| ≤
|Vhi|
∆
· 3κ log n

2
, (III) λinit ≤

m

∆
· 10κ log n, (9)

where Uhi := U ∩Vhi and λinit :=
∑

u∈U degG(u). We use the following algorithm in order to obtain
such a set U .

Algorithm 2: ExtractStars(G)

1 for 10 log n iterations do
2 Sample U ⊆ V by placing each u ∈ V into U independently with probability κ log n/∆
3 if |Vhi| < ∆/4 then
4 U ← U ∩ Vlo

5 if U satisfies Equation (9) then
6 return U

The following lemma summarises the behaviour of Algorithm 2.

Lemma 7.2. Algorithm 2 runs in Õ(m) time and returns a set U satisfying Equation (9) w.h.p.

Proof. Each iteration of the algorithm can be implemented to run in Õ(m) time in the obvious
way. We now argue that each iteration of the algorithm finds a set U which satisfies Equation (9)
with probability at least 1/2 by lower bounding the probability that the set U satisfies each of the
conditions.

Condition (I): We first consider the case that |Vhi| ≥ ∆/4. Given some u ∈ V , we want to show
that degV \U (u) ≤ ∆−300 log n w.h.p. If degV (u) ≤ ∆/2, then this holds trivially since ∆ ≥ κ log n.
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Otherwise, if degV (u) ≥ ∆/2, we have that E[degU (u)] = degV (u) · (κ/∆) log n ≥ (κ/2) log n and
it follows from Chernoff bounds that

Pr
[
degU (u) <

κ

4
· log n

]
≤ exp

(
− κ

16
· log n

)
≤ n−κ/16.

Thus, degU (u) ≥ 300 log n with probability at least 1−n−κ/16. Taking a union bound, we get that
Condition (I) holds w.h.p. Now, consider the case that |Vhi| < ∆/4. Given some u ∈ V , we want
to show that degV \Ulo

(u) ≤ ∆ − 300 log n w.h.p., where Ulo(u) = U ∩ Vlo(u). If degV (u) ≤ ∆/2,
then this again holds trivially. Otherwise, u has at least ∆/4 neighbors in Vlo. It follows that
E[degUlo

(u)] ≥ (κ/4) log n and, applying Chernoff bounds, we get that

Pr
[
degUlo

(u) <
κ

8
· log n

]
≤ exp

(
− κ

32
· log n

)
≤ n−κ/32.

Taking a union bound, we again get that Condition (I) holds w.h.p.

Condition (II): If |Vhi| < ∆/4, then Uhi = ∅, and Condition (II) holds trivially. If |Vhi| ≥ ∆/4, we
have that E[|Uhi|] = (|Vhi|/∆) · κ log n ≥ (κ/4) log n. Applying Chernoff bounds, we get that

Pr

[
|Uhi| ≥

3

2
· |Vhi|

∆
· κ log n

]
≤ exp

(
− 1

10
· |Vhi|

∆
· κ log n

)
≤ exp

(
− κ

40
· log n

)
≤ n−κ/40.

Condition (III): We first note that

E

[∑
u∈U

degG(u)

]
=
∑
u∈V

degG(u) · Pr[u ∈ U ] =
2mκ log n

∆
.

By Markov’s inequality, it follows that

Pr

[∑
u∈U

degG(u) ≥ 10mκ log n

∆

]
≤ 1

5
.

By taking a union bound, we have that U satisfies Equation (9) with probability at least 1/2.

Phase 2: Coloring the Graph

After finding a set U that satisfies Equation (9), our algorithm proceeds to edge coloring the
graph G. Using the fact that U satisfies Condition (I), we can apply NearVizingColoring (Theo-
rem 6.3) in order to produce a (∆ + 1)-edge coloring χ of G[V \U ]. We then use ColorLightStars

(Lemma 6.1) to extend χ to all of the edges incident on nodes in Ulo := {u ∈ U | degG(u) ≤ ∆/2}.
Finally, we use ColorHeavyStars (Corollary 6.2) to extend χ to all of the edges incident on nodes
in Uhi := U \Ulo. Algorithm 3 gives the full description of the second phase of our algorithm using
the subroutines from Section 6. We write nhi = |Vhi|.
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Algorithm 3: FastColoring(G,U)

1 // Step 1: Efficiently color the non-star edges using slack

2 χ← NearVizingColoring(G[V \ U ])

3 // Step 2: Extend χ to the light stars

4 λlo :=
∑

u∈Ulo
degχG(u)

5 while λlo ≥ 1 do
6 χ← ColorLightStars(G,χ,Ulo)

7 // Step 3: Extend χ to the heavy stars

8 λhi :=
∑

u∈Uhi
degχG(u)

9 τ :=
√

mnhi/min{∆2 +
√

∆n, n}
10 while λhi > τ do
11 χ← ColorHeavyStars(G,χ,Uhi)
12 while λhi ≥ 1 do
13 Let e be an uncolored edge
14 χ← FastVizingExtension(G,χ, e)

15 return χ

The following theorem summarizes the properties of Algorithm 3.

Theorem 7.3. Algorithm 3 produces a (∆ + 1)-edge coloring of the graph G in expected time
Õ(mn1/4).

Theorem 1.1 follows directly from Theorem 7.3 and Lemma 7.2 using standard probabilistic
amplification.

7.1 Analysis

It follows from the properties of the set U and the correctness of the subroutines used by our
algorithm that Algorithm 3 always returns a (∆ + 1)-edge coloring of G. It remains to bound the
expected running time of our algorithm. It follows directly from Theorem 6.3 that Step 1 of our
algorithm takes Õ(m) expected time. We now show that Steps 2 and 3 of our algorithm take Õ(m)
and Õ(mn1/4) expected time, respectively.

The Running Time of Step 2

We first note that, for all u ∈ Ulo, we have |missχG(u)| ≥ ∆/2. Applying Lemma 6.1, it follows
that Step 2 of our algorithm runs for Õ(1) iterations, where each iteration takes expected time
Õ(λlo∆+m). By the properties of the vertex set U (refer to Equation (9)) obtained by Algorithm 2,
we have λlo ≤ λinit ≤ Õ(m/∆). Thus, Step 2 takes Õ(m) expected time in total.

The Running Time of Step 3

Applying Corollary 6.2 and Theorem 6.4, it follows that Step 3 of our algorithm takes expected
time

Õ

(
λhi∆ +

∆m|Uhi|
τ

)
+ Õ

(
τ ·min{∆2 +

√
∆n, n}

)
.
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By the properties of the vertex set U (refer to Equation (9)), we have λhi ≤ λinit ≤ Õ(m/∆) and
|Uhi| ≤ Õ(nhi/∆), hence the expected running time of Step 3 of our algorithm is bounded by

Õ
(
m +

mnhi

τ

)
+ Õ

(
τ ·min{∆2 +

√
∆n, n}

)
= Õ(m) + Õ

(√
mnhi ·min{∆2 +

√
∆n, n}

)
= Õ(m) + Õ

(√
mnhi ·min{∆ + (∆n)1/4,

√
n}
)
.

Let Γ :=
√
mnhi ·min{∆+(∆n)1/4,

√
n}. We now show that Γ ≤ 4mn1/4, which implies that Step 3

has an expected running time of Õ(mn1/4). We consider the following 3 cases.

Case 1: ∆ ≥
√
n. Then min{∆ + (∆n)1/4,

√
n} ≤

√
n, thus

Γ ≤
√
mnhi ·

√
n = m

√
nhin/m < m

√
4n/∆ = 2m

√
n/∆ ≤ 2mn1/4,

where the penultimate and last inequalities hold as ∆nhi ≤ 4m and ∆ ≥
√
n, respectively.

Case 2: n1/3 ≤ ∆ <
√
n. Then min{∆ + (∆n)1/4,

√
n} ≤ 2∆, thus

Γ ≤ 2
√
mnhi ·∆ = 2

√
m∆nhi ·

√
∆ ≤ 4m

√
∆ ≤ 4mn1/4,

where the penultimate and last inequalities hold as ∆nhi ≤ 4m and ∆ ≤
√
n.

Case 3: ∆ < n1/3. Then min{∆ + (∆n)1/4,
√
n} ≤ 2(∆n)1/4, thus

Γ ≤ 2
√
mnhi · (∆n)1/4 = 2m

√
nhi/m · (∆n)1/4 ≤ 2m

√
4/∆ · (∆n)1/4 = 4m(n/∆)1/4 ≤ 4mn1/4,

where the penultimate inequality holds as ∆nhi ≤ 4m.

8 Color Extension to Edges

In this section, we prove the following theorem.

Theorem 8.1 (Theorem 6.4 Restated). Given a undirected simple graph G = (V,E) on n vertices
and maximum degree ∆, as well as and a partial (∆ + 1)-edge coloring χ of G with an uncolored
edge e, we can extend χ to the edge e in Õ(∆2 +

√
∆n) expected time.

This section is self-contained (excluding the basic notations from Section 5) and uses slightly
different notation than the sketch of this proof in Section 4.

8.1 Preliminaries

We now describe the main components used in our multi-step Vizing chain construction.

The Algorithm VizingFan

The first component of our algorithm is a standard Vizing fan construction [Sin19, DHZ19] but with
one simple modification. The algorithm VizingFan takes as input some uncolored edge (u, v) and
colors cu ∈ missχ(u) and cv ∈ missχ(v). It then proceeds to either extend χ to the uncolored edge
(u, v) by shifting colors around u, or constructs a Vizing fan around the vertex u while ensuring
that (1) none of the vertices vi participating in the fan have cu ∈ missχ(vi), and (2) that the color
of the first vertex in the fan is not cv. Algorithm 4 gives a formal description of this procedure.
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Algorithm 4: VizingFan(χ, u, v, cu, cv)

1 i← 0 and v0 ← v
2 Let c0 ∈ missχ(v0) \ {cv}
3 while ci /∈ {c0, . . . , ci−1} and ci /∈ missχ(u) do
4 Let (u, vi+1) be the edge with color χ(u, vi+1) = ci
5 Let ci+1 ∈ missχ(vi+1)
6 if cu ∈ missχ(vi+1) then
7 ci+1 ← cu
8 i← i + 1

9 if ci ∈ missχ(u) then
10 for j = 0 . . . i do
11 χ(u, vj)← cj
12 return χ

13 else
14 return (v0, c0), . . . , (vi, ci)

We refer to the sequence (v0, c0), . . . , (vi, ci) returned by Algorithm 4 as a Vizing fan. We say that
a Vizing fan is c-primed if c = ci.

The Algorithm Vizing

We now give an algorithm Vizing which builds a Vizing chain using VizingFan as a subroutine and
extends the coloring χ to the uncolored edge (u, v). The algorithm also takes colors cu ∈ missχ(u)
and cv ∈ missχ(v) as input. We make some small modifications to the standard implementation
of this algorithm for technical reasons that will become clear later on. Algorithm 5 gives a formal
description of this procedure.

Algorithm 5: Vizing(χ, u, v, cu, cv)

1 if VizingFan(χ, u, v, cu, cv) extends χ then
2 χ← VizingFan(χ, u, v, cu, cv)
3 return χ

4 F = (v0, c0), . . . , (vk, ck)← VizingFan(χ, u, v, cu, cv)
5 if F is not cv-primed then
6 Let c ∈ missχ(u) \ {cu}
7 Let P denote the maximal {c, ck}-alternating path starting at u

8 if F is cv-primed then
9 Let ci be the first appearance of cv in c0, . . . , ck

10 Let P denote the maximal {cu, cv}-alternating path starting at vi
11 Extend χ to (u, v) by flipping the path P and shifting colors around u (see Lemma 8.2)
12 return χ

Thus, running Vizing(χ, u, v, cu, cv) extends the coloring χ to the uncolored edge (u, v) by shifting
colors around the vertex u and flipping the colors of the alternating path P . The analysis of the
case where F is not cv-primed is the same as in the standard Vizing chain construction [Sin19].
The case where F is cv-primed follows from a similar argument. The following lemma summarises
the behaviour of this algorithm.

Lemma 8.2. Algorithm 5 extends the coloring χ to the edge (u, v) in time Õ(∆ + |P |).
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Proof. We begin by showing that the path P is well-defined. In the case that F is not cv-primed,
we know that c ∈ missχ(u) and ck /∈ missχ(u), so there is a {c, ck}-alternating path starting at u.
In the case that F is cv-primed, we know by the properties of our Vizing fan construction that
cv ∈ missχ(vi) and cu /∈ missχ(vi), so there is a {cu, cv}-alternating path starting at u. Thus, in
both cases, the path P is well-defined. We now describe how to extend the coloring χ to (u, v) in
both cases.

If F is not cv-primed: Let cj be the first appearance of ck. We consider the cases where the P
does or does not have vj as an endpoint. If P does not end at vj , then we can shift the colors of
the first j + 1 edges in the fan by setting χ(u, v0)← c0, . . . , χ(u, vj)← cj and flip the colors of the
alternating path P . If P does end at vj , then we flip the colors of the alternating path P , shift the
colors of the fan by setting χ(u, v0) ← χ(u, v1), . . . , χ(u, vk−1) ← χ(u, vk), and set χ(u, vk) ← ck.
Note that, while shifting the fan, we have χ(u, vi+1) = c ̸= ck.

If F is cv-primed: We consider the cases where the P does or does not have u as an endpoint.
If P does not end at u, then the edge (u, vi+1) (which has color cv) is not contained in P . Thus,
we can shift the colors of the first i edges in the fan by setting χ(u, v0)← c0, . . . , χ(u, vi−1)← ci−1,
flip the colors of the alternating path P , and set χ(u, vi) ← cu. If P does end at u, then the edge
(u, vi+1) is contained in P . Thus, we can flip the colors of the alternating path P , shift the colors
of the fan by setting χ(u, v0) ← χ(u, v1), . . . , χ(u, vk−1) ← χ(u, vk), and set χ(u, vk) ← cv. Note
that, while shifting the fan, we have χ(u, vi+1) = cu ̸= ci.

Using standard data structures, we can implement this algorithm to run in time Õ(∆+ |P |).

The following lemma summarises the key properties of the path P considered by Algorithm 5.

Lemma 8.3. The path P considered by the algorithm satisfies one of the following properties:

1. P is a maximal {c′, c′′}-alternating path in χ starting at u where {c′, c′′} ∩ {cu, cv} = ∅.

2. P is a maximal {cu, cv}-alternating path in χ starting at neither u nor v.12

These properties of the path P will be crucial in our analysis later on. We refer to an alternating
path satisfying Condition 1 (resp. Condition 2) above as non-overlapping (resp. overlapping).

The Algorithm TruncatedVizing

We now give an algorithm TruncatedVizing, which takes the same input as Vizing along with an
additional argument t ∈ N. It then proceeds to extend the coloring χ to the edge e in the same
way as Vizing, with one difference: If the maximal alternating path P that is flipped by Vizing has
length greater than t, the algorithm only flips the first t − 1 edges of P and leaves the tth edge
in the path P uncolored. It then returns the new coloring obtained after applying this procedure
along with the edge left uncolored (as long as P had length greater than t). Algorithm 6 gives a
formal description of this procedure.

12Note that, in this case, the path P starts at the vertex vi of the fan such that ci is the first appearance of cv in
c0, . . . , ck. Since c0 ̸= cv, we know that vi ̸= v.
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Algorithm 6: TruncatedVizing(χ, u, v, cu, cv, t)

1 Let P = e1, . . . , et denote the alternating path considered by Vizing(χ, u, v, cu, cv)
2 if |P | ≤ t then
3 χ← Vizing(χ, u, v, cu, cv)
4 return χ

5 if P is non-overlapping then
6 Let (u, vi) be the first edge in P
7 for j = 0 . . . i− 1 do
8 χ(u, vj)← cj
9 if P is overlapping then

10 Let vi be the first vertex in P
11 for j = 0 . . . i− 1 do
12 χ(u, vj)← cj
13 χ(u, vi)← cu
14 Flip the colors of the first t− 1 edges in the {c′, c′′}-alternating path P
15 χ(et)← ⊥
16 (u′, v′)← et
17 Let c′u ∈ missχ(u′) ∩ {c′, c′′} and c′v ∈ missχ(v′) ∩ {c′, c′′}
18 return χ, u′, v′, c′u, c

′
v

8.2 Our Algorithm

We define parameters ℓ := 102 log n and L := 103ℓ2(∆2 +
√

∆n). Our algorithm is given an
uncolored edge (u, v) and starts by attempting to construct a Vizing chain by calling Vizing. If
the Vizing chain has length Ω(L), then our algorithm instead calls TruncatedVizing and randomly
truncates the Vizing chain after O(L) steps. It then repeats this process, moving the uncolored edge
around the graph by randomly truncating long Vizing chains, until it finds a short Vizing chain
and successfully extends the coloring. Lemma 8.4 gives a formal description of this procedure.

Algorithm 7: ExtendColoring(χ, u, v)

1 Let cu ∈ missχ(u) and cv ∈ missχ(v)
2 repeat
3 Let P = u1, . . . , uk+1 be the alternating path considered by Vizing(χ, u, v, cu, cv)
4 if k ≤ 2L + 2 then
5 χ← Vizing(χ, u, v, cu, cv)
6 return χ

7 Sample i ∼ [L] independently and u.a.r.
8 (χ, u, v, cu, cv)← TruncatedVizing(χ, u, v, cu, cv, i + 1)

Using standard data structures, we can implement each iteration of Algorithm 7 to run in time
Õ(L) ≤ Õ(∆2 +

√
∆n). The following lemma, which we prove in Section 8.3, shows that the

algorithm terminates after Õ(1) many iterations with constant probability.

Lemma 8.4. Algorithm 7 terminates within ℓ+ 1 iterations with probability at least 1/(160 log n).

8.3 Analysis

In order to analyse our algorithm, we define a (possibly infinite) rooted meta-tree T which captures
information about all of the different possible executions of our algorithm.
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The Meta-Tree T

The meta-tree T is rooted at a meta-node r. Every meta-node x ∈ T corresponds to an iteration of
Algorithm 7, and the root-to-x path from r to x in T corresponds to the execution of Algorithm 7
leading to this iteration. For each such meta-node x, we denote the state of an object Φ in
Algorithm 7 at the start of the corresponding iteration of the algorithm by Φ(x), e.g. χ(x) denotes
the coloring χ at the start of the corresponding iteration of the algorithm. Given a meta-node x,
P (x) denotes the alternating path considered during the corresponding iteration of the algorithm.
Consider the following definition:

• We say that x is terminal if the length of P (x) is at most 2L + 2.

Each meta-node x has no children in T if it is terminal. Otherwise, x has exactly L children in T ,
each one corresponding to a different choice of edge in P (x) for truncating the alternating path.13

Random Walks in T : We first note that there is a one-to-one correspondence between root-to-
leaf paths in T and executions of Algorithm 7. Furthermore, an execution of our algorithm defines
a random walk on T that starts at the root and, at each step, independently and uniformly samples
a random child of the current meta-node (as long as the current meta-node is not terminal). Our
algorithm successfully extends the coloring χ if and only if this random walk encounters a terminal
meta-node. To this end, we show that such a random walk encounters a terminal meta-node within
O(log n) steps with probability Ω(1/ log n), proving Lemma 8.4.

Classifications of Meta-Nodes: Given a meta-node x ∈ T , let τ (x) denote the colors of the
alternating path P (x) that we consider during this iteration. We refer to any pair of colors as a
type, and to τ (x) as the type of x. Let P̃ (x) denote the alternating path obtained by truncating the
τ (x)-alternating path P (x) after the first L+ 1 edges.14 Let r = x0, . . . , xi = x denote the root-to-x
path in T . Consider the following definitions:

• We say that x is α-dirty if τ (x) ∩ (τ (x0) ∪ · · · ∪ τ (xi−2)) ̸= ∅ and τ (x) ∩ τ (xi−1) = ∅.

• We say that x is β-dirty if τ (x) = τ (xi−1).

• We say that x is α-contaminated (resp. β-contaminated) if it at least a 1/(10ℓ) proportion
of its children are α-dirty (resp. β-dirty).

• We say that x is damaged if it is not dirty and P (x) is not a maximal τ (x)-alternating path
in χ(r) such that χ(r)(e) = χ(x)(e) for all e ∈ P (x).

Note that a meta-node x cannot be both α-dirty and β-dirty, but it can be both α-contaminated
and β-contaminated. We say that a meta-node x is dirty (resp. contaminated) if it is α-dirty or
β-dirty (resp. α-contaminated or β-contaminated). Furthermore, it follows from Lemma 8.3 that
either τ (x) = τ (xi−1) or τ (x)∩τ (xi−1) = ∅, so x is not dirty if and only if τ (x)∩(τ (x0)∪· · ·∪τ (xi−1)) = ∅.

13Intuitively, one can visualise constructing T by starting at the root r, where χ(r) = χ and (u(r), v(r)) = (u, v),
and considering all possible executions of Algorithm 7 for the different random choices made by the algorithm.

14Note that the alternating path P̃ (x) is not maximal, while the alternating path P (x) is maximal.
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Properties of the Meta-Tree T

We now describe some properties of the meta-tree T that will be useful while analyzing the be-
haviour of random walks in T . We begin with the following lemmas which show that contaminated
meta-nodes have lots of terminal children.

Lemma 8.5. Let x be an α-contaminated meta-node within the first ℓ levels of T . Then at least a
1/(40ℓ) proportion of the children of x are terminal.

Proof. Let r = x0, . . . , xi = x denote the root-to-x path in T . Since x is α-contaminated, it has at
least L/(10ℓ) α-dirty children y1, . . . , yk. Since i ≤ ℓ, at most 2ℓ colors appear in τ (x0)∪· · ·∪τ (xi−2).
Thus, each of the α-dirty children y1, . . . , yk has one of at most 2ℓ(∆+1) ≤ 4ℓ∆ many types. Since
τ (x) is disjoint from the types of the α-dirty children of x, we have that the alternating paths
P (y1), . . . , P (yk) corresponding to the children of x are all maximal alternating paths with the same
colors in χ(y1) and thus have a total length of at most 4ℓ∆n (since the total length of the maximal
alternating paths of any type is at most n). Furthermore, each alternating path in the collection
P (y1), . . . , P (yk) appears at most twice (once in each orientation), so we have at least L/(20ℓ) distinct
alternating paths. Thus, by an averaging argument, at least half of these paths have length at most
8ℓ∆n · (20ℓ/L) ≤ L, and hence correspond to terminal meta-nodes.

Lemma 8.6. Let x be a β-contaminated meta-node within the first ℓ levels of T . Then at least a
1/(20ℓ) proportion of the children of x are terminal.

Proof. Since x is β-contaminated, it has at least L/(10ℓ) β-dirty children y1, . . . , yk. Let τ denote
the type of x (which is the same as the types of y1, . . . , yk). Consider the coloring χ(y1) and the
uncolored edge (u(y1), v(y1)). Let P ′ (resp. P ′′) denote the τ -alternating path starting at u(y1)

(resp. v(y1)), and let w′ (resp. w′′) denote it’s other endpoint. Let Q denote the path or cycle
obtained by concatenating P ′, (u(y1), v(y1)), and P ′′. Then the colorings χ(y1), . . . , χ(yk) only differ
on the colors of the edges in Q. Furthermore, in each of these colorings, Q always consists of either
1 or 2 τ -alternating paths and an uncolored edge.

Now, consider some meta-node yi and it’s corresponding vertex u(yi) in Q. There is an edge
f (yi) connecting u(yi) to the first vertex on the τ -alternating path P (yi). We either have that the
other endpoint of f (yi) is w′ or w′′, or that P (yi) is vertex disjoint from Q. In the former case,
we say that yi is a bad extension point. Since there are only 2∆ many edges incident on w′ and
w′′, there are at most 2∆ bad extension points. Let {z1, . . . , zk′} ⊆ {y1, . . . , yk} be the subset
of the yi that are not bad extension points. Now, consider the collection of τ -alternating paths
P (z1), . . . , P (zk′ ). Since these are all vertex disjoint from Q, they are all maximal τ -alternating paths
with the same colors in χ(y1), and hence have a total length of at most n without counting repeated
paths. Furthermore, each alternating path in the collection P (z1), . . . , P (zk′ ) appears at most 2∆
times since each endpoint of each path has maximum degree ∆, and thus can only be incident on at
most ∆ edges f (yi) connecting the path to some u(yi). Thus, their total length (counting repeated
paths) is at most 2∆n. By an averaging argument, at least half of these paths have length at most

4∆n

k′
≤ 4∆n · 20ℓ

L
≤ L

since k′ ≥ L/(10ℓ)− 2∆ ≥ L/(20ℓ). It follows that at least a 1/(20ℓ) proportion of the children of
x are terminal.

The following lemma shows that meta-nodes cannot have many damaged children.
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Lemma 8.7. Let x be a meta-node within the first ℓ levels of T . Then at most a 1/(10ℓ) proportion
of the children of x are damaged.

Proof. We begin with the following structural claim about alternating paths.

Claim 8.8. Let X ⊆ [∆+1] a be set of at most 2ℓ colors and let χ and χ′ be (∆+1)-edge colorings
such that the set D := {e ∈ E | {χ(e), χ′(e)} \ X ̸= ∅, χ(e) ̸= χ′(e)} has size at most ∆ℓ. For
any (∆ + 1)-edge coloring χ̃, let P(χ̃) denote the set of all maximal alternating paths w.r.t. χ̃ with
colors in [∆ + 1] \X. Then we have that |P(χ)⊕ P(χ′)| ≤ 6∆2ℓ.

Proof. Consider the following process: Start with the coloring χ0 := χ, uncolor each of the edges
in D one by one to obtain a sequence of colorings χ1, . . . , χ|D|, then recolor each of the edges in D
with the color it receives under χ′ to obtain a sequence of colorings χ|D|+1, . . . , χ2|D|. Then we can
observe that P(χ′) = P(χ2|D|) since any edge that receives a different color under χ′ and χ2|D| has
colors in X under both. Furthermore, for any 0 ≤ i < 2|D|, we have that |P(χi)⊕P(χi+1)| ≤ 3∆.
This is because each edge can belong to at most ∆ different maximal alternating paths (one for
each other color) and changing the color of an edge can cause 2 maximal alternating paths to merge
into 1, and vice versa. It follows that

|P(χ)⊕ P(χ′)| ≤
2|D|−1∑
i=0

|P(χi)⊕ P(χi+1)| ≤ 6∆|D| ≤ 6∆2ℓ.

Let x be a meta-node within the first ℓ levels of T with root-to-x path x0, . . . , xi. If x is terminal,
then we are done. Otherwise, let y1, . . . , yk denote the children of x whose types are disjoint from
the types τ (x0), . . . , τ (xi) of its ancestors (note that any child of x which is not in {y1, . . . , yk} is
dirty and hence not damaged). Let e ∈ E be an edge such that χ(r)(e) /∈ τ (x0) ∪ · · · ∪ τ (xi) and
χ(r)(e) ̸= χ(yj)(e) for some yj . Then we know that e was involved in a fan construction in one of
the iterations corresponding to the meta-nodes x0, . . . , xi. Since there are at most ∆ such edges
per iteration, there are at most ∆ℓ such edges in total. We can observe that each alternating path
in the collection P (y1), . . . , P (yk) appears at most twice (once in each orientation) and that each
of these paths receives the same colors and is a maximal alternating path in each of the colorings
χ(y1), . . . , χ(yk). Thus, applying the preceding claim with X = τ (x0) ∪ · · · ∪ τ (xi), χ = χ(r) and
χ′ = χ(y1), it follows that at most 6∆2ℓ of the alternating paths in P (y1), . . . , P (yk) are not maximal
alternating paths with the same colors in χ(r). Hence, at most 12∆2ℓ of the meta-nodes y1, . . . , yk
are damaged. Since 12∆2ℓ/L ≤ 1/(10ℓ), it follows that at most an 1/(10ℓ) proportion of the
children of x are damaged.

The following lemma is crucial for showing that there cannot be many long walks that do not
contain any dirty or damaged meta-nodes.

Lemma 8.9. Let τ0, . . . , τi be a sequence of types. Then there exist at most n meta-nodes x with
root-to-x path x0, . . . , xi such that τ (xj) = τj and xj is not dirty, damaged or terminal for all xj.

Proof. Let Γ(τ0, . . . , τi) denote the set of all such meta-nodes. We now prove the following claim.

Claim 8.10. For any distinct meta-nodes x, y ∈ Γ(τ0, . . . , τi), the τi-alternating paths P̃ (x) and
P̃ (y) are vertex disjoint.
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Proof. We prove this by induction. For any type τ0 we have that Γ(τ0) ⊆ {x0}. Thus, this
claim holds trivially for i = 0. For the inductive step, suppose that the claim holds for some
0 ≤ j−1 ≤ i−1. If the type τj shares a color with any of the types τ0, . . . , τj−1, then Γ(τ0, . . . , τj) = ∅
since the types of the meta-nodes on the root-to-x path of a non-dirty meta-node x must be disjoint.
Thus, we can assume that the types τ0, . . . , τj are disjoint. Now, let x, y ∈ Γ(τ0, . . . , τj) and let
(u(x), v(x)) and (u(y), v(y)) be the uncolored edges in the iterations of our algorithm corresponding to
meta-nodes x and y respectively. By the induction hypothesis, the vertices u(x) and u(y) are distinct
since they either lie on different positions of the same τj−1-alternating path or on different vertex
disjoint paths. The τj-alternating paths P (x) and P (y) constructed by our algorithm have u(x) and
u(y) as endpoints respectively. Since x and y are not dirty and not damaged, these alternating
paths are also maximal τj-alternating paths with the exact same colors under χ(r), so they are
either distinct paths or the same path but with different orientations. In the first case, P̃ (x) and
P̃ (y) are clearly disjoint. In the second case, we note that x and y are not terminal; hence, P (x)

has length at least 2L + 3, so P̃ (x) and P̃ (y) are also vertex disjoint since they have length at most
L + 1.

Thus, the size of Γ(τ0, . . . , τi) is upper bounded by the maximum size of a collection of vertex
disjoint paths, which is at most n.

Analyzing the Random Walk

Consider the following definition of a good walk.

• We say that a walk x0, x1, . . . in the meta-tree T is good if it encounters either a terminal
or contaminated meta-node within the first ℓ steps.

The following lemma bounds the probability that a good random walk has length at most ℓ + 1.

Lemma 8.11. Let x0, x1, . . . be a random walk in T . Given that the random walk is good, it has
length at most ℓ + 1 with probability 1/(40ℓ).

Proof. Since the random walk is good, we know that xi is terminal or contaminated for some i. If
xi is terminal, then the random walk has length i ≤ ℓ. If xi is α-contaminated, then it follows from
Lemma 8.5 that xi+1 is terminal (and hence that the random walk has length at most i + 1) with
probability at least 1/(40ℓ). Similarly, if xi is β-contaminated, then it follows from Lemma 8.6 that
the random walk has length at most i + 1 with probability at least 1/(20ℓ).

It follows from Lemma 8.11 that it suffices to lower bound the probability that a random walk
in the meta-tree T is good. More precisely, we have the following. Let WT denote the collection of
all walks in T and let (xi)i ∼ WT denote a random walk. Then we have that

Pr
(xi)i∼WT

[|(xi)i| ≤ ℓ + 1] ≥ Pr
(xi)i∼WT

[|(xi)i| ≤ ℓ + 1 | (xi)i is good] · Pr
(xi)i∼WT

[(xi)i is good]

≥ 1

40ℓ
· Pr
(xi)i∼WT

[(xi)i is good]. (10)

Here, the first inequality follows from conditioning on the event that the random walk (xi)i is good,
and the second inequality follows from Lemma 8.11.
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The Meta-Subtree T ′: We define a meta-subtree T ′ of T as follows: Start with the meta-tree T
and remove all of the (strict) descendants of contaminated meta-nodes. We can observe that the
probability of a random walk in T being good is the same as the probability of a random walk in
T ′ having length at most ℓ, i.e. that

Pr
(xi)i∼WT

[(xi)i is good] = Pr
(xi)i∼WT ′

[|(xi)i| ≤ ℓ]. (11)

To see why this is true, consider a mapping ϕ : WT −→ WT ′ which maps a walk (xi)i in T to a
walk ϕ((xi)i) which is defined as the prefix of (xi)i which is contained in T ′. Then we can observe
that (xi)i is good if and only if |ϕ((xi)i)| ≤ ℓ.

The Meta-Subtree T ′′: We define a meta-subtree T ′′ of T ′ as follows: Start with the meta-tree
T ′ and remove all of the meta-nodes that are dirty or damaged (and their descendants) from T ′.
It turns out that bounding the length of random walks in T ′′ is much easier than bounding the
length of random walks in T ′. Thus, we only want to consider random walks in T ′ which are also
contained in T ′′ for the first ℓ steps. In particular, we use the following bound

Pr
(xi)i∼WT ′

[|(xi)i| ≤ ℓ] ≥ Pr
(xi)i∼WT ′′

[|(xi)i| ≤ ℓ] · Pr
(xi)i∼WT ′

[(xi)i≤ℓ ⊆ T ′′]. (12)

Given any meta-node x ∈ T ′ that has children, we know that at most a 1/(5ℓ) proportion of the
children of x are dirty since x is not contaminated.15 Furthermore, it follows from Lemma 8.7 that
at most a 1/(10ℓ) proportion of the children of x are damaged. It follows that a random walk in
T ′ does not encounter any dirty or damaged meta-nodes within the first ℓ steps with probability
at least (1− 3/(10ℓ))ℓ ≥ 1− 3/10 = 7/10. Thus, we have that

Pr
(xi)i∼WT ′

[(xi)i≤ℓ ⊆ T ′′] ≥ 7

10
. (13)

Combining these inequalities, it follows that

Pr
(xi)i∼WT

[|(xi)i| ≤ ℓ + 1] ≥ 1

80ℓ
· Pr
(xi)i∼WT ′′

[|(xi)i| ≤ ℓ]. (14)

We now lower bound the probability that a random walk in T ′′ terminates within at most ℓ steps.

Random Walks in T ′′: Let T ′′
ℓ+1 denote the meta-nodes at depth ℓ+ 1 in T ′′. Given a walk (xi)i

in T ′′, (xi)i has length greater than ℓ if and only if (xi)i contains some meta-node from T ′′
ℓ+1, thus

Pr
(xi)i∼WT ′′

[|(xi)i| > ℓ] = Pr
(xi)i∼WT ′′

[T ′′
ℓ+1 ∩ (xi)i ̸= ∅].

Lemma 8.12. For any x ∈ T ′′
ℓ+1, we have that Pr(xi)i∼WT ′′ [x ∈ (xi)i] ≤ (2/L)ℓ+1.

Proof. Give some non-leaf meta-node y ∈ T ′′, we can see that y has at least L · (1−3/(10ℓ)) ≥ L/2
children in T ′′. This is because y is not contaminated (otherwise it would be a leaf) and hence
has at most L/(5ℓ) dirty children in T ′ and at most L/(10ℓ) damaged children in T ′. Thus, the
probability that a random walk in T ′′ contains a child y′ of y given that it contains y is at most
1/(L/2). It follows that the probability that a random walk in T ′′ contains a meta-node x ∈ T ′′

ℓ+1

is at most (2/L)ℓ+1.

15Recall that since x is neither α nor β-contaminated, at most a 1/(10ℓ) proportion of its children at α-dirty and
at most a 1/(10ℓ) proportion of its children at β-dirty
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Lemma 8.13. |T ′′
ℓ+1| ≤ ∆2ℓnL.

Proof. Recall the definition of Γ from the proof of Lemma 8.9. Let x ∈ T ′′
ℓ+1 and let x0, . . . , xℓ+1

denote the root-to-x path in T . Then it must be the case that xℓ+1 is the child of some meta-node
in Γ(τ (x0), . . . , τ (xℓ)) since it’s parent cannot be terminal. It follows that every meta-node in T ′′

ℓ+1

is a child of some meta-node in ⋃
τ∈([∆+1]

2 )
ℓ

Γ(τ).

Since any meta-node has at most L children and |Γ(τ)| ≤ n by Lemma 8.9, it follows that

|T ′′
ℓ+1| ≤ L ·

∑
τ∈([∆+1]

2 )
ℓ

|Γ(τ)| ≤ L · (∆2)ℓ · n ≤ ∆2ℓnL.

It follows from Lemmas 8.12 and 8.13 that

Pr
(xi)i∼WT ′′

[T ′′
ℓ+1 ∩ (xi)i ̸= ∅] ≤

∑
x∈T ′′

ℓ+1

Pr
(xi)i∼WT ′′

[x ∈ (xi)i] ≤ |T ′′
ℓ+1| ·

(
2

L

)ℓ+1

≤ nL ·
(

2∆2

L

)ℓ+1

≤ 1

2
.

Hence, we have that

Pr
(xi)i∼WT ′′

[|(xi)i| ≤ ℓ] = 1− Pr
(xi)i∼WT ′′

[|(xi)i| > ℓ] ≥ 1

2
. (15)

Combining Equations (14) and (15), it follows that

Pr
(xi)i∼WT

[|(xi)i| ≤ ℓ + 1] ≥ 1

160ℓ
. (16)

In other words, a random walk in the meta-tree T terminates within ℓ + 1 steps with probability
at least 1/(80ℓ).

8.4 Proof of Theorem 8.1

Suppose that we run Algorithm 7 for κ = (ℓ+ 1) · 1600 log2 n iterations. It follows from Lemma 8.4
that, given an arbitrary input, the probability of the algorithm successfully extending the coloring
within ℓ + 1 iterations is at least 1/(160 log n). Thus, we can split these κ updates into batches of
ℓ+ 1 iterations, where the probability that the algorithm successfully extends χ within some batch
is at least 1/(160 log n). Thus, the probability that the algorithm fails to extend the coloring within
κ iterations it at most(

1− 1

160 log n

)1600 log2 n

≤ exp

(
−1600 log2 n

160 log n

)
=

1

n10
.

In the low probability event that the algorithm does not successfully extend the coloring within
κ iterations, then we can extend it in O(n) time using Vizing’s original algorithm. Thus, our
algorithm runs in time κ · Õ(L) ≤ Õ(∆2 +

√
∆n) both with high probability and in expectation.
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9 Color Extension to Stars

The idea of coloring stars was first proposed in [BCC+24]. In this section, we provide a simpler
algorithm with improved runtime bound.

Lemma 9.1 (Lemma 6.1 Restated). There is an algorithm ColorLightStars that, given a graph
G, a partial (∆ + 1)-edge coloring χ of G and subset U⋆ ⊆ V such that:

• |missχ(u)| ≥ d for all u ∈ U⋆ for some positive integer d ∈ N,

• there are λ uncolored edges incident on U⋆,

extends the coloring χ to Ω(λ) uncolored edges incident on U⋆ in Õ(λ∆ + ∆m/d) expected time.

9.1 Recap on Vizing’s algorithm

Our algorithm will again use the original Vizing’s algorithm in [Viz64] that extends any partial
edge coloring χ by one more colored edge. Since we will not need the involved modifications as in
previous sections and only use the basic version in a slightly different way, for reader’s convenience,
we will describe it again here with simpler terms.

Let (u, v) ∈ E be any uncolored edge under χ; that is, χ(u, v) = ⊥. For any vertex w ∈ V ,
specify an arbitrary color cχ(w) ∈ missχ(w), and also specify an arbitrary color z ∈ missχ(v)
different from cχ(v). Then find a sequence of distinct neighbors v = v0, v1, v2, . . . , vk of u such that
the following holds; this sequence v1, v2, . . . , vk is usually called a Vizing fan.

• For any 2 ≤ i ≤ k, χ(u, vi) = cχ(vi−1), and z = χ(u, v1).

• Either cχ(vk) ∈ missχ(u), or there exists an index 1 ≤ j < k such that χ(u, vj) = cχ(vk).

If cχ(vk) ∈ missχ(u), then rotate the coloring around u as: χ(u, vi)← χ(u, vi+1), 0 ≤ i < k, and
χ(u, vk)← cχ(vk).

Now, let us assume cχ(vk) /∈ missχ(u), so there must exist an index 1 ≤ j < k such that
χ(u, vj) = cχ(vk). Take an arbitrary color x ∈ missχ(u), and define y = χ(u, vj). Let P be the
maximal {x, y}-alternating path beginning at u.

(1) P does not end at vj−1.

Apply a rotation operation: χ(u, vi) ← χ(u, vi+1), 0 ≤ i < j, and flip the maximal {x, y}-
alternating path P . Finally, assign χ(u, vj)← x.

(2) P ends at vj−1.

Flip the color of the maximal {x, y}-alternating path from u, then apply a rotation operation:
χ(u, vi)← χ(u, vi+1), 0 ≤ i < k, then assign color χ(u, vk)← y.

The runtime of Vizing’s procedure is bounded by Õ(∆ + |P |).

9.2 Algorithm Description

Throughout our color extension procedure, we will be repeatedly assigning proper colors to edges in
S defined below while decreasing the size of some sets missχ(u), u ∈ U⋆. Therefore, we will keep a
terminal subset W ⊆ U⋆ with the property that for any u ∈W , we have |missχ(u)| ≥ d/2. Initially,
set W ← U⋆.
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We will maintain the following data structures.

• A set S of currently uncolored edges incident on W . At the beginning we choose S to be
those λ uncolored edges incident on W , which is initially U⋆. While initially S is the set of
uncolored edges incident on U⋆, throughout the execution of the algorithm some uncolored
edges may be removed from S; however, as we will argue (refer to Section 9.4), whenever a
constant fraction of edges have been removed from S, it implies that a constant fraction of
the original set of λ uncolored edges have been colored.

We assign all edges in S a direction: for each edge (v, u) ∈ S such that u ∈ W , orient this
edge from v to u; if both u, v are in W , orient this edge arbitrarily.

• For each vertex v ∈ V , our algorithm will explicitly maintain a color cχ(v) ∈ missχ(v).

• For each vertex u ∈W and each of its neighbor v such that χ(u, v) = ⊥, maintain a tentative
color clrχ(v, u) ∈ missχ(v) with the following two properties.

– clrχ(v, u) ̸= cχ(v) for all u ∈W such that χ(u, v) = ⊥;

– clrχ(v, u) ̸= clrχ(v, u′) for all pairs of distinct neighbors u, u′ of v in W such that χ(u, v) =
χ(u′, v) = ⊥.

Note that such choices of clrχ(·, ·) which are compatible with cχ(·) always exist since the
palette size is ∆ + 1.

• For each color x, maintain a list lstχ(u, x) = {(v, u) ∈ S | u ∈W,x = clrχ(v, u)}.

We first argue that these data structures can be maintained efficiently.

Lemma 9.2. Suppose the partial coloring χ and the set S has undergone k changes. Then, the
data structures missχ(·), cχ(·), clrχ(·, ·) can be maintained in Õ(k) time.

Proof. For each vertex v ∈ V , maintain a list of colors clrχ(v) = {clrχ(v, u) | (v, u) ∈ S}, and also
maintain the set missχ(v) \ clrχ(v). To recover the data structures after k changes to χ and S,
consider the following two steps.

(1) Temporarily assign cχ(v) ← ⊥. Initialize a color set Cv ← missχ(v) \ clrχ(v) using our old
version of the data structure. Also, let Sv be the set of new edges (v, u) ∈ S added to S, and
temporarily assign clrχ(v, u)← ⊥ for the moment.

Then, for each old color x removed around v in the new χ, add x to Cv. For each new color x
added around v, remove x from Cv, and also if there is currently an edge (v, u) ∈ S such that
clrχ(v, u) = x, temporarilly assign clrχ(v, u)← ⊥ and add (v, u) to Sv. Each of these steps can
be implemented in O(log ∆) time.

(2) We can see that Sv is currently the set of edges (v, u) ∈ S such that clrχ(v, u) = ⊥, and
Cv = missχ(v) \ clrχ(v). Since there are ∆ + 1 colors, we know that |Cv| ≥ |Sv|+ 1. Therefore,
we can allocate Cv properly to clrχ(v, u), (v, u) ∈ Sv as well as cχ(v) without any conflicts.

The total runtime of the above two steps is Õ(k).

For each vertex u ∈ U⋆, define a directed graph Fχ(u) in the following way; this digraph Fχ(u)
will not be maintained by our algorithm, but only computed on-the-fly when needed.
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• Vertices. The vertex set of digraph Fχ(u) is the set of all colored neighbors Nχ(u) of u.

• Edges. For each z, w ∈ Nχ(u), if χ(u,w) = cχ(z), then add a directed edge (z, w) to Fχ(u).

So by definition, the out-degree of each vertex in Fχ(u) is at most one, and so Fχ(u) is a directed
pseudo-forest; in particular, note that any weakly connected component in Fχ(u) is a directed tree
plus at most one extra edge.

Definition 9.3 (uncolored edge classification). For any directed edge (v, u) ∈ S such that u ∈W ,
the directed edge (v, u) is classified into one of the following four types.

• If clrχ(v, u) ∈ missχ(u), then the directed edge (v, u) is called ready.

• Otherwise, if there exists another uncolored directed edge (v′, u) ∈ S such that clrχ(v → u) =
clrχ(v′ → u), then the directed edge (v, u) is called social.

• Otherwise, let w ∈ Nχ(u) be the unique vertex such that χ(u,w) = clrχ(v, u). Let Tw
χ (u) ⊆ Fχ(u)

be the weakly connected component that contains vertex w. If w is the only vertex w′ ∈ Tw
χ (u)

such that |lstχ(u, χ(u,w′))| = 1, then the directed edge (v, u) is called independent.

• Otherwise, the directed edge (v, u) is called lonely.

Our main color extension algorithm is described as follows.

Define a length parameter L = 200∆m
dλ . The algorithm consists of iterations of random color

extension, which are repeated as long as |S| ≥ 3λ
4 . We start by uniformly sampling an uncolored

edge (v, u) ∈ S incident on W , and then sampling uniformly at random a color x ∈ missχ(u).
The execution of an iteration splits into the following four cases.

(1) If (v, u) is classified as ready, then assign χ(v, u)← clrχ(v, u). In this case, this iteration of
color extension would be considered successful.

(2) Otherwise, check if (v, u) is social, which can be done by checking if |lstχ(u, clrχ(v, u))| > 1.
If so, let P be the maximal {x, y}-alternating path starting from vertex v where y =
clrχ(v, u).

If |P | ≤ L and P does not terminate at vertex u, then flip this maximal {x, y}-alternating
path P , and assign χ(v, u) ← x. In this case, this iteration of color extension would be
considered successful.

(3) Otherwise, construct the entire graph Fχ(u) and check if (v, u) is independent. If so, try
to apply Vizing’s procedure described in Section 9.1 to extend χ to (v, u), where vertex v
uses the missing color clrχ(v, u), vertices w use missing colors cχ(w),∀w ∈ Nχ(u), and u
uses the missing color x ∈ missχ(u). Let Q be the maximal {x, z}-alternating path which
is the Vizing chain for (v, u); in Vizing’s procedure, Q could be an empty path.

If |Q| ≤ L, then complete the Vizing procedure, which extends χ to (v, u). In this case,
this iteration of color extension would be considered successful.

(4) Otherwise, suppose χ(u,w) = clrχ(v, u) and let Tw
χ (u) ⊆ Fχ(u) be the weakly connected

component containing w. Since (v, u) is not independent, by Definition 9.3, there ex-
ists another edge (v′, u) ∈ S and w′ ∈ Tw

χ (u), such that clrχ(v′, u) = χ(u,w′) and
|lstχ(u, χ(u,w′))| = 1. This implies that (v′, u) ∈ S is also lonely.
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Let T ⊆ Tw
χ (u) be a spanning tree such that all edges are in the direction from children to

parents in Tw
χ (u). Let t ∈ T be the least common ancestor of w,w′ in tree T , and define

w0(= v), w1(= w), . . . , wl = t and w′
0(= v′), w′

1(= w′), . . . , w′
k = t be the tree paths from

w,w′ to t. As t is the least common ancestor, these two tree paths are internally disjoint.

Perform the following color shifts to χ:

χ(u,wi)← χ(u,wi+1), ∀ 0 ≤ i < l − 1

χ(u,w′
j)← χ(u,w′

j+1), ∀ 0 ≤ j ≤ k − 1

Then, uncolor the edges χ(u,wl−1), χ(u,w′
k−1)← ⊥. After that, update the edge set

S ← S ∪ {(wl−1, u), (w′
k−1, u)} \ {(v, u), (v′, u)}

Finally, assign tentative colors

clrχ(wl−1, u), clrχ(w′
k−1, u)← χ(u, t)

After the above steps (in all four cases), we maintain the data structures regarding
clrχ(·, ·), cχ(·), lstχ(·, ·) in the straightforward manner. Finally, if the size of some set
missχ(u0), u0 ∈ W drops below d/2, remove u0 from W , and also remove all edges (v, u0)
from S.

9.3 Runtime Analysis

Lemma 9.4. Given any partial edge coloring χ of G = (V,E) and any color x ∈ {1, 2, . . . ,∆ + 1},
for any y ∈ {1, 2, . . . ,∆ + 1} \{x}, let Lx,y denote the total length of all maximal {x, y}-alternating
paths of lengths at least 2. Then

∑
y,y ̸=x Lx,y < 3m.

Proof. For any maximal {x, y}-alternating path P such that |P | ≥ 2, the number of edges in P
with color x is at most twice the number of edges in P with color y. Therefore, taking a summing
over all y such that y ̸= x and all such maximal {x, y}-alternating paths, we have∑

y,y ̸=x

Lx,y ≤ 3 · |{e ∈ E | χ(e) ̸= x}| < 3m.

Lemma 9.5. The runtime of each iteration of color extension is Õ(∆ + L).

Proof. First, let us analyze the runtime in each of the four cases.

• In Step (1), the runtime is O(1).

• In Step (2), checking if an edge (v, u) ∈ S is social takes O(1) time. Checking if the length of
the maximal alternating path P exceeds L takes Õ(L) time by tracing this path P until it ends
or reaches length L + 1. Flipping this path also takes Õ(L) time.

• In Step (3), constructing the entire digraph Fχ(u) takes Õ(∆) time. Deciding if (v, u) is inde-
pendent also takes Õ(∆) time by going over all vertices w′ in the weakly connected component
Tw
χ (u) ⊆ Fχ(u) containing the unique vertex w ∈ Nχ(u) such that χ(u,w) = clrχ(v, u) and

checking if |lstχ(u, χ(u,w′))| = 1. After that, running Vizing’s procedure takes time Õ(∆ + L).
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• In Step (4), finding the other edge (v′, u) ∈ F and w′ ∈ Tw
χ (u) takes Õ(∆) time. Later on, finding

the two tree paths and shifting the colors also take time Õ(∆).

In each of the four cases, to recover the validity of the data structures clrχ(·, ·), cχ(·), lstχ(·, ·), it
takes Õ(1) for each color change to χ. As we have just proved that the total number of changes to χ
and S is bounded by O(∆+L), the runtime to maintain clrχ(·, ·), cχ(·), lstχ(·, ·) would be Õ(∆+L),
according to Lemma 9.2. Finally, since each iteration adds one colored edge, W loses at most 2
vertices in each iteration, which takes runtime O(∆) to update S.

So it suffices to analyze the total number of iterations. The following claim serves as the basis
of our analysis.

Lemma 9.6. During our algorithm, whenever we have clrχ(v1, u0) = clrχ(v2, u0) for two different
edges (v1, u0), (v2, u0) ∈ S, meaning that both (v1, u0), (v2, u0) are social, they will stay in S as two
social edges until one of the following events occur.

1. Vertex v1 or v2 is incident on a newly colored edge (v, u) with new color χ(v, u)← clrχ(v1, u0).

2. v1 or v2 becomes an endpoint of a flipped maximal alternating path P or Q computed in Step
(2) or Step (3), which successfully extends χ to one more uncolored edge.

Proof. If there are no successful color extensions since we have the equality clrχ(v1, u0) = clrχ(v2, u0),
then the partial coloring χ could only be modified by Step (4). Since both (v1, u0) and (v2, u0) are
social, by the description of Step (4), (v1, u0) and (v2, u0) will stay in S after this iteration of Step
(4). Furthermore, during Step (4), the new color added around vertex vb, ∀b ∈ {1, 2}, can only be
cχ(vb) or clrχ(vb, u

′), u′ ̸= u. Since our data structure has guaranteed that cχ(vb) ̸= clrχ(vb, u0) and
clrχ(vb, u

′) ̸= clrχ(vb, u0), u
′
0 ̸= u0, both tentative colors clrχ(v1, u0) and clrχ(v2, u0) will not change,

and so (v1, u0) and (v2, u0) will remain social.
We may henceforth assume that there has been a successful color extension. Further, we assume

that neither v1 nor v2 is incident on the newly colored edge (v, u) such that χ(v, u) is assigned
clrχ(v1, u0), otherwise event 1 occurs and we are done. Consequently, the sets missχ(vb), b ∈ ∀{1, 2},
could change only in one of the following two cases.

• vb is an endpoint of the maximal alternating path P or Q in Step (2) (3). Thus, event 2 occurs.

• vb lies on the Vizing fan in Step (3).

In this case, since we assumed that event 1 does not occur and so (vb, u0) is not colored right
away, the new possible color added around vertex vb can only be cχ(vb) or clrχ(vb, u

′
0) for some

u′0 ̸= u0. Since our data structure has guaranteed that cχ(vb) ̸= clrχ(vb, u0) and clrχ(vb, u
′) ̸=

clrχ(vb, u0), u
′
0 ̸= u0, the tentative color clrχ(vb, u0) does not change. Hence, (v1, u0), (v2, u0) will

remain social.

Corollary 9.7. After each successful color extension, at most 8 social edges are turned into non-
social ones.

Proof. Consider any successful color extension, where an uncolored edge (v, u) has obtained a color.
By Lemma 9.6, a social edge (v1, u0) ∈ S becomes no longer social after a successful iteration if
one of the following conditions holds.
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• Vertex v1 is incident on the newly colored (v, u) which happens to be assigned the same color
χ(v, u) = clrχ(v1, u0), or v1 is the endpoint of the maximal alternating path P or Q.

In this case, there are at most 4 choices for this possible social edge (v1, v0).

• There exists a unique social edge (v2, u0) ̸= (v1, u0) such that clrχ(v1, u0) = clrχ(v2, u0), and
(v2, u0) is colored or v2 is the endpoint of the maximal alternating path P or Q.

In this case, there are also at most 4 choices for this possible social edge (v1, v0).

Therefore, overall, at most 8 social edges would no longer be social after a successful extension.

At any moment, let mrdy,mscl,mind,mlon be the total number edges in S that are ready, social,
independent, and lonely, respectively, according to Definition 9.3, and therefore |S| = mrdy +mscl +
mind +mlon. Define a potential function Φ = 10|S|+mlon. Consider any single iteration of random
color extension which picks a random edge (v, u) ∈ S.

Lemma 9.8. If mrdy ≥ |S|/4, then with probability ≥ 1/4, the edge (v, u) gets colored in Step (1),
and thus in this case the potential Φ drops by at least 2.

Proof. This is straightforward according to our algorithm description.

Lemma 9.9. If mscl ≥ |S|/4, then with probability ≥ 3
80 , the edge (v, u) gets colored in Step (2),

and thus in this case the potential Φ drops by at least 2.

Proof. For each social edge e = (v, u) and color x ∈ missχ(u), define Px(e) to be the maximal
{x, y}-alternating path starting at vertex v where y = clrχ(v, u).

Note that for any fixed u ∈ W and x ∈ missχ(u), the number of different paths Px(v, u) over
social edges (v, u) incident on u is precisely the number of such edges, since any two distinct edges
lead to different paths. Fixing an arbitrary missed color x ∈ missχ(u) for each vertex u ∈ W , the
total number of different paths over social edges incident on each vertex of W with respect to its
arbitrarily fixed missed color is at least 1

2 ·mscl, where the factor of 1/2 stems from the fact that
the same path may be counted twice, as two different social edges e,′ e could be the endpoints
edges of the same alternating path. Since |missχ(u)| ≥ d/2 for each u ∈ W and as every different
missing color x at u leads to distinct maximal alternating paths, the collection P of all different
paths Px(e), over all mscl social edges e = (v, u), u ∈W and over all x ∈ missχ(u), satisfies:

|P| ≥ 1

2
· d

2
·mscl =

dmscl

4
. (17)

Define P ′ to be the sub-collection of P, which includes all paths in P that do not terminate
at vertex u. We argue that |P ′| ≥ |P/2, which by Equation (17) yields |P ′| ≥ dmscl

8 . In fact, for
any u ∈ W , any color x ∈ missχ(u) and any other color y, let v1, v2, . . . , vk≥2 be all uncolored
neighbors of u such that (vi, u) ∈ S and clrχ(vi, u) = y. Then, there exists at most one index
1 ≤ i ≤ k, such that the maximal {x, y}-alternating path Px(vi, u) starting at vertex vi terminates
at u (otherwise u would be incident on more than one edge colored y). Therefore, all other maximal
{x, y}-alternating paths Px(vj , u), j ̸= i do not end at u. It follows that |P ′| ≥ |P/2.

Lemma 9.4 implies that the total length of all maximal alternating paths whose lengths are at
least 2 is at most 3(∆ + 1)m. Therefore, the average length of paths in P ′ is at most

24(∆ + 1)m

dmscl
≤ 128(∆ + 1)m

dλ
< 0.7L,
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from which we conclude that the expected length of a path, conditioned on the event that (v, u) ∈
P ′, is bounded by 0.7L. Using Markov’s inequality, the edge (v, u) gets colored with probability
≥ 0.3, conditioned on the event that (v, u) ∈ P ′. Therefore, the overall success probability of Step
(2) is at least 0.3 · 18 = 3

80 .

Lemma 9.10. If mind ≥ |S|/4, then with probability ≥ 0.15, the edge (v, u) gets colored in Step
(3), and thus in this case the potential Φ drops by at least 2.

Proof. For each independent edge e = (v, u) and color x ∈ missχ(u), define Qx(e) to be the maximal
{x, z}-alternating path starting at vertex u if we try to perform Vizing’s procedure to extend χ to
e around the colored neighborhood Nχ(u), where vertex v uses the missing color clrχ(v, u), vertices
w use missing colors cχ(w), ∀w ∈ Nχ(u), and u uses the missing color x ∈ missχ(u).

We argue that for any fixed u ∈W and x ∈ missχ(u), all the maximal alternating paths Qx(·, u)
that correspond to different independent edges are different. Indeed, for any pair of independent
edges (v1, u), (v2, u), denoting by (u,w1) and (u,w2) the first edges of maximal alternating paths
Qx(v1, u) and Qx(v2, u), respectively, then by definition of independent edges definition 9.3, w1, w2

should belong to different weakly connected components of the digraph Fχ(u), and therefore w1 ̸=
w2.

Since |missχ(u)| ≥ d/2 for each u ∈ W , the collection Q of all different paths Qx(e), over all
mind independent edges e = (v, u), u ∈W and over all x ∈ missχ(u), satisfies:

|Q| ≥ 1

2
· d

2
·mind =

dmind

4
,

where the extra factor of 1/2 stems from the fact that two different independent edges e, e′ could
be the endpoints edges of the same alternating path.

Lemma 9.4 implies that the total length of paths in Q whose lengths are at least 2 is at most
3(∆ + 1)m. Therefore, the average length of paths in Q is at most

12(∆ + 1)m

dmind
≤ 64(∆ + 1)m

dλ
< 0.4L,

from which we conclude that the expected length of a path, conditioned on event that edge (v, u)
is independent, is bounded by 0.4L. Using Markov’s inequality, the edge (v, u) gets colored with
probability ≥ 0.6, conditioned on the event that edge (v, u) is independent. Therefore, the overall
success probability of Step (2) is at least 0.15.

Lemma 9.11. If mlon ≥ |S|/4, then with probability ≥ 0.25, the potential function Φ drops by 2
after Step (4).

Proof. Since mlon ≥ |S|/4, with probability at least 0.25, the random edge (v, u) would be lonely.
In this case, we would execute Step (4) which turns two lonely edges (v, u), (v′, u) into social ones.
Thus, Φ decreases by 2.

9.4 Proof of Lemma 6.1

By Lemma 9.8, Lemma 9.9, Lemma 9.10, and Lemma 9.11, each iteration of the random color
extension procedure decreases Φ by at least 2 with constant probability. Since the initial potential
value of Φ is set as 10|S| + mlon ≤ 11λ, it follows that the algorithm terminates after O(λ log n)
iterations with high probability. By Lemma 9.5, each iteration takes time Õ(∆ + L), hence the
total running time is bounded by Õ(λ log n(∆ + L)) = Õ

(
∆λ + ∆m

d

)
with high probability.
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As for the total number of newly colored edges, |S| decreases either when a new edge in S gets
colored or when a vertex u ∈ U⋆ is removed from W . In the latter case, when a vertex u ∈ U⋆ is
removed from W , since |missχ(u)| was at least d at the beginning, there must have been at least
d/2 newly colored edges incident on u when u has left W . Consequently, we can charge the loss of
at most d/2 units to the size of |S| due to the removal of u from S to the at least d/2 newly colored
edges incident on u; however, a newly colored edge may be charged by its two endpoints. In other
words, if the size of S has reduced by δ units, at least δ/3 edges of S have been colored. Finally,
noting that our algorithm terminates whenever the size of S drops below 3λ

4 , it follows that at this

stage we must have colored at least λ
12 new edges, which concludes the proof of Lemma 6.1.

38



References

[Alo03] Noga Alon. A simple algorithm for edge-coloring bipartite multigraphs. Information
Processing Letters, 85(6):301–302, 2003.

[Arj82] Eshrat Arjomandi. An efficient algorithm for colouring the edges of a graph with ∆+1
colours. INFOR: Information Systems and Operational Research, 20(2):82–101, 1982.

[Ass24] Sepehr Assadi. Faster vizing and near-vizing edge coloring algorithms. CoRR,
abs/2405.13371, 2024.

[BBKO22] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed edge
coloring in time polylogarithmic in ∆. In Proceedings of the 2022 ACM Symposium on
Principles of Distributed Computing, pages 15–25, 2022.

[BCC+24] Sayan Bhattacharya, Din Carmon, Mart́ın Costa, Shay Solomon, and Tianyi Zhang.
Faster (∆ + 1)-Edge Coloring: Breaking the m

√
n Time Barrier. In 65th IEEE Sym-

posium on Foundations of Computer Science (FOCS), 2024.

[BCHN18] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon
Nanongkai. Dynamic algorithms for graph coloring. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1–20.
SIAM, 2018.

[BCPS23] Sayan Bhattacharya, Mart́ın Costa, Nadav Panski, and Shay Solomon. Density-
sensitive algorithms for (∆+1)-edge coloring. CoRR, abs/2307.02415, 2023. To appear
in ESA’24.

[BCPS24a] Sayan Bhattacharya, Mart́ın Costa, Nadav Panski, and Shay Solomon. Arboricity-
dependent algorithms for edge coloring. In 19th Scandinavian Symposium and Work-
shops on Algorithm Theory (SWAT), volume 294 of LIPIcs, pages 12:1–12:15, 2024.

[BCPS24b] Sayan Bhattacharya, Mart́ın Costa, Nadav Panski, and Shay Solomon. Nibbling at
long cycles: Dynamic (and static) edge coloring in optimal time. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2024.

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel,
and Hamed Saleh. Streaming and massively parallel algorithms for edge coloring. In
27th Annual European Symposium on Algorithms (ESA), volume 144 of LIPIcs, pages
15:1–15:14, 2019.

[Ber22] Anton Bernshteyn. A fast distributed algorithm for (δ + 1)-edge-coloring. J. Comb.
Theory, Ser. B, 152:319–352, 2022.

[BGW21] Sayan Bhattacharya, Fabrizio Grandoni, and David Wajc. Online edge coloring algo-
rithms via the nibble method. In Proceedings of theACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2830–2842. SIAM, 2021.

[BM17] Leonid Barenboim and Tzalik Maimon. Fully-dynamic graph algorithms with sublinear
time inspired by distributed computing. In International Conference on Computational
Science (ICCS), volume 108 of Procedia Computer Science, pages 89–98. Elsevier, 2017.

39



[BS23] Soheil Behnezhad and Mohammad Saneian. Streaming edge coloring with asymptoti-
cally optimal colors. arXiv preprint arXiv:2305.01714, 2023.

[BSVW24] Joakim Blikstad, Ola Svensson, Radu Vintan, and David Wajc. Online edge coloring
is (nearly) as easy as offline. In Proceedings of the Annual ACM Symposium on Theory
of Computing (STOC). ACM, 2024.

[CH82] Richard Cole and John Hopcroft. On edge coloring bipartite graphs. SIAM Journal
on Computing, 11(3):540–546, 1982.

[CHL+20] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. Distributed
edge coloring and a special case of the constructive lovász local lemma. ACM Trans.
Algorithms, 16(1):8:1–8:51, 2020.

[Chr23] Aleksander Bjørn Grodt Christiansen. The power of multi-step vizing chains. In Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC), pages
1013–1026. ACM, 2023.

[Chr24] Aleksander B. G. Christiansen. Deterministic dynamic edge-colouring. CoRR,
abs/2402.13139, 2024.

[CK08] Richard Cole and  Lukasz Kowalik. New linear-time algorithms for edge-coloring planar
graphs. Algorithmica, 50(3):351–368, 2008.

[CMZ23] Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. Streaming edge coloring with sub-
quadratic palette size. arXiv preprint arXiv:2305.07090, 2023.

[CN90] Marek Chrobak and Takao Nishizeki. Improved edge-coloring algorithms for planar
graphs. Journal of Algorithms, 11(1):102–116, 1990.

[COS01] Richard Cole, Kirstin Ost, and Stefan Schirra. Edge-coloring bipartite multigraphs in
O(E log D) time. Comb., 21(1):5–12, 2001.

[CPW19] Ilan Reuven Cohen, Binghui Peng, and David Wajc. Tight bounds for online edge col-
oring. In 60th IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 1–25. IEEE Computer Society, 2019.

[CRV24] Aleksander B. G. Christiansen, Eva Rotenberg, and Juliette Vlieghe. Sparsity-
parameterised dynamic edge colouring. In 19th Scandinavian Symposium and Work-
shops on Algorithm Theory (SWAT), volume 294 of LIPIcs, pages 20:1–20:18, 2024.

[CY89] Marek Chrobak and Moti Yung. Fast algorithms for edge-coloring planar graphs. Jour-
nal of Algorithms, 10(1):35–51, 1989.

[Dav23] Peter Davies. Improved distributed algorithms for the lovász local lemma and edge col-
oring. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 4273–4295. SIAM, 2023.

[DGS24] Aditi Dudeja, Rashmika Goswami, and Michael Saks. Randomized greedy online edge
coloring succeeds for dense and randomly-ordered graphs, 2024.

[DHZ19] Ran Duan, Haoqing He, and Tianyi Zhang. Dynamic edge coloring with improved ap-
proximation. In 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2019.

40



[EK24] Michael Elkin and Ariel Khuzman. Deterministic simple (1 + ϵ)∆-edge-coloring in
near-linear time. CoRR, abs/2401.10538, 2024.

[EPS14] Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆|1)-Edge-Coloring is Much Easier
than Maximal Matching in the Distributed Setting. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 355–370. SIAM, 2014.

[FGK17] Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic distributed edge-
coloring via hypergraph maximal matching. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 180–191. IEEE, 2017.

[GKMU18] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. Deterministic dis-
tributed edge-coloring with fewer colors. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 418–430, 2018.

[GNK+85] Harold N Gabow, Takao Nishizeki, Oded Kariv, Daneil Leven, and Osamu Terada.
Algorithms for edge coloring. Technical Rport, 1985.

[GP20] Jan Grebik and Oleg Pikhurko. Measurable versions of vizing’s theorem. Advances in
Mathematics, 374(107378), 2020.

[GS23] Prantar Ghosh and Manuel Stoeckl. Low-memory algorithms for online and w-
streaming edge coloring. arXiv preprint arXiv:2304.12285, 2023.

[KLS+22] Janardhan Kulkarni, Yang P. Liu, Ashwin Sah, Mehtaab Sawhney, and Jakub Tar-
nawski. Online edge coloring via tree recurrences and correlation decay. In 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 104–116. ACM,
2022.

[Kow24] Lukasz Kowalik. Edge-coloring sparse graphs with ∆ colors in quasilinear time. CoRR,
abs/2401.13839, 2024. To appear in ESA’24.

[KS87] Howard J Karloff and David B Shmoys. Efficient parallel algorithms for edge coloring
problems. Journal of Algorithms, 8(1):39–52, 1987.

[PR01] Alessandro Panconesi and Romeo Rizzi. Some simple distributed algorithms for sparse
networks. Distributed computing, 14(2):97–100, 2001.

[Sin19] Corwin Sinnamon. Fast and simple edge-coloring algorithms. arXiv preprint
arXiv:1907.03201, 2019.

[SV19] Hsin-Hao Su and Hoa T. Vu. Towards the locality of vizing’s theorem. In Moses
Charikar and Edith Cohen, editors, 51st Annual ACM SIGACT Symposium on Theory
of Computing (STOC), 2019.

[SW21] Amin Saberi and David Wajc. The greedy algorithm is not optimal for on-line edge
coloring. In 48th International Colloquium on Automata, Languages, and Programming
(ICALP), volume 198 of LIPIcs, pages 109:1–109:18, 2021.

[Viz64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz,
3:25–30, 1964.

41


	I Extended Abstract
	Introduction
	Related Work
	Organization of the Rest of the Paper

	Overview of Our Techniques
	Proof (Sketch) of Lemma 2.3
	Proof (Sketch) of Theorem 2.4
	Preliminaries
	Our Algorithm
	The Meta-Tree
	Basic Properties of the Meta-Tree

	Analyzing the Random Walk on the Meta-Tree: Proof of Lemma 4.2
	Getting Rid of Assumption 4.1: The Major Technical Hurdles


	II Full Version
	Basic Notations
	The Algorithmic Components
	Coloring Stars
	Near-Vizing Coloring
	Color Extension Theorem

	Our Algorithm
	Analysis

	Color Extension to Edges
	Preliminaries
	Our Algorithm
	Analysis
	Proof of thm:extension expected

	Color Extension to Stars
	Recap on Vizing's algorithm
	Algorithm Description
	Runtime Analysis
	Proof of lem:key 1



