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Q: How fast can we edge color a graph?



Near-Linear Time Coloring

Theorem. Greedy 2Δ − 1 coloring in 𝑂(𝑚 log Δ) time.

Theorem [Duan, He, Zhang, SODA’19]. 1 + 𝜖 Δ coloring in ෨𝑂(𝑚/𝜖2) time for 𝜖 > 0, when Δ = Ω(log 𝑛 /𝜖).

Theorem [Elkin, Khuzman, arXiv’24]. 1 + 𝜖 Δ coloring in ෨𝑂(𝑚/𝜖) time for 𝜖 > 0.

Theorem [ABBCSZ, STOC’25]. Δ + 1 coloring in 𝑂(𝑚 log Δ) time.

Q: Are there any coloring algorithms that run in 𝑂(𝑚) (i.e. exact-linear) time?



Exact-Linear Time Coloring

• For 2 + 𝜖 Δ coloring, a trivial algorithm is known: 

Randomized Greedy:  

For each edge 𝑒, sample colors u.a.r. until a color 𝛼 available at 𝑒 is found and set 𝜒 𝑒 ← 𝛼.

Analysis:

1. Ω(𝜖Δ) colors available at each edge ⇒ each iteration takes 𝑂(1/𝜖) expected time.

2. Runs in 𝑂(𝑚/𝜖) time w.h.p. for 𝜖 > 0.

• All known implementations of greedy 2Δ − 1 coloring algorithm take Ω(𝑚 log Δ) time.

Q1: For any constant 𝝐 > 𝟎, is there a static 𝟏 + 𝝐 𝚫 coloring algorithm with 𝑶(𝒎) running time?



The Dynamic Setting



The Dynamic Setting

Input: A sequence of updates (edge insertions/deletions) in a graph 𝐺 and a parameter Δ such that Δ 𝐺 never 

exceeds Δ.

Want to (explicitly) maintain a coloring 𝜒 of 𝐺. Let 𝐺(𝑡) denote the graph 𝐺 after the 𝑡𝑡ℎ update.

After the 𝑡𝑡ℎ update: Update 𝜒 to an edge coloring of the graph 𝐺(𝑡).

update time = the time taken to handle an update.

recourse = the number of edges that change color during an update.

recourse ≤ update time.



Dynamic Edge Coloring

Theorem. Dynamic 1 + 𝜖 Δ coloring in 𝑂(log7 𝑛 /𝜖2) update time, when Δ = Ω(log2 𝑛 /𝜖2).

[Duan, He, Zhang, SODA’19]

Theorem. Dynamic 1 + 𝜖 Δ coloring in 𝑂(log9 𝑛 log6 Δ /𝜖6) update time.

[Christiansen, STOC’22]

Q2: For any constant 𝝐 > 𝟎, can we maintain a 𝟏 + 𝝐 𝚫 coloring in constant update time?

• A dynamic algorithm with 𝑂(1) update time ⇒ a static algorithm with 𝑂(𝑚) running time.



Barrier 1: A (Soft) Lower Bound

Theorem [Chang, He, Li, Pettie, Uitto, SODA’18]. For any 0 < 𝜖 ≤ 1/3, there exists a graph 𝐺 of max degree Δ

and a 1 + 𝜖 Δ-edge coloring 𝜒 of 𝐺 with exactly 1 uncolored edge such that:

Extending 𝜒 to be a coloring of the whole graph requires changing the colors of Ω(log(𝜖𝑛)/𝜖) edges.

• Any algorithm that works by extending arbitrary colorings has Ω log 𝑛 recourse.

• [Duan et al., SODA’19] and [Christiansen, STOC’22] take this approach (based on multi-step Vizing chains).

• We need a different approach…



Dynamic Edge Coloring via the Nibble Method

Theorem. Dynamic 1 + 𝜖 Δ coloring with poly(1/𝜖) recourse, when Δ = Ω(log 𝑛 / poly(𝜖)).

[Bhattacharya, Grandoni, Wajc, SODA’21]

• [Bhattacharya et al., SODA’21] maintain a coloring from a ‘nice’ distribution → not subject to the soft lower bound.

• Their algorithm is based on the static NIBBLE algorithm for edge coloring.

➢ A technique that has been well studied in various settings.

➢ Completely different to algorithms based on Vizing chains!

• Can we implement this algorithm efficiently?



Barrier 2: Regularization Gadgets

NIBBLE only works on near-regular graphs: Need to use ‘regularization gadgets’:

Create a clique of size Δ − 1 out of dummy nodes for each ‘real’ node 𝑢.

Connect 𝑢 to Δ − deg(𝑢) of its dummy nodes ⇒ near-regular supergraph of 𝐺.

• Leads to Ω(𝑛Δ2) running time overhead in the static setting

• Can we bypass the need for these gadgets?

Δ = 5

𝑢



Dynamic Edge Coloring via the Nibble Method

Theorem. Dynamic 1 + 𝜖 Δ coloring with poly(1/𝜖) update time, when Δ ≥ (log 𝑛)Θ(poly(1/𝜖)).

[Bhattacharya, C, Panski, Solomon, SODA’24]

• Bypass the need for regularization by using the subsampling technique of [Kulkarni, Liu, Sah, Sawhney, 

Tarnawski, STOC’22].

• This allows for a new variant of NIBBLE: works for arbitrary graphs, not just near-regular graphs.

• No need for regularization gadgets—admits an efficient implementation.

Corollary. Static 1 + 𝜖 Δ coloring with 𝑂(𝑚 poly(1/𝜖)) running time, when Δ ≥ (log 𝑛)Θ(poly(1/𝜖)).

Follow up work removed restriction on Δ in static setting (based on MSVs): [Bernshteyn, Dhawan, arXiv’24]



Rest of the Talk

• The static NIBBLE algorithm and its analysis.

• The dynamization of NIBBLE and its implementation.

• Open problems.



The Static Algorithm



Static Algorithm: How Does NIBBLE Work? 
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Static Algorithm: Analysis of NIBBLE 

Suppose we can show that:

1. For each edge 𝑒 sampled during round 𝑖, 𝑃𝑖 𝑒 ≥ Ω(Δ poly 𝜖 ).

2. For each node 𝑢, deg𝐹 𝑢 ≤ 𝑂(𝜖Δ).

(1) ⇒ can sample colors from 𝑃𝑖 𝑒  in O(poly 1/𝜖 ) time.

(2) ⇒ can color the failed and leftover edges with 𝑂(𝜖Δ) extra colors.

• Leads to a O(𝑚 poly 1/𝜖 ) time algorithm that uses 1 + 𝜖 Δ colors.

• Near-regularity necessary for concentration bounds in standard analysis.

• Can we perform a different analysis?



Static Algorithm: NIBBLE on Forests

• If input graph 𝐺 is a forest, NIBBLE is much easier to analyze.

• Objects that are usually not independent, are independent when 𝐺 is a forest.

• Let 𝑒 be an edge sampled during round 𝑖.

• Consider the state of NIBBLE after the first 𝑖 − 1 iterations:

𝑒

𝑢 𝑣



Static Algorithm: NIBBLE on Forests

• Consider the graph with the edges appearing in the first 𝑖 − 1 rounds.

• 𝑢 and 𝑣 are in different connected components.

• ⇒ the palettes of 𝑃𝑖(𝑢) and 𝑃𝑖(𝑣) independent.

• Hence:

 E 𝑃𝑖 𝑒 = σ𝑐 P[𝑐 ∈ 𝑃𝑖(𝑒)] = σ𝑐 P 𝑐 ∈ 𝑃𝑖 𝑢 ⋅ P[𝑐 ∈ 𝑃𝑖(𝑣)] =
𝑃𝑖 𝑢 |⋅|𝑃𝑖(𝑣)

1+𝜖 Δ
≥ Ω(Δ𝜖2).

𝑒

𝑢 𝑣



Static Algorithm: NIBBLE on Locally Treelike 
Graphs
• Are there more general graphs that can be analyzed in this simple manner?

Claim: The color assigned to an edge 𝑒 by NIBBLE depends only on the structure of the (𝑇 + 1)-neighborhood 

of the edge 𝑒.

• If the (𝑇 + 1)-neighborhood of every edge 𝑒 is a tree, the same analysis goes through.

• We call such graphs ‘locally treelike’.

• Reduction to locally treelike graphs [Kulkarni et al., STOC’22].



Static Algorithm: Subsampling to Locally 
Treelike Graphs
Subsampling: Split the graph 𝐺 into graphs 𝐺1, … , 𝐺𝜂 by placing each edge 𝑒 ∈ 𝐺 into one of the 𝐺𝑖 

independently and u.a.r. (𝜂 is a parameter that depends on Δ and 𝜖).

• Cycles in 𝐺 are unlikely to appear in any of the 𝐺𝑗.
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Static Algorithm: Subsampling to Locally 
Treelike Graphs
Subsampling: Split the graph 𝐺 into graphs 𝐺1, … , 𝐺𝜂 by placing each edge 𝑒 ∈ 𝐺 into one of the 𝐺𝑖 

independently and u.a.r. (𝜂 is a parameter that depends on Δ and 𝜖).

• Cycles in 𝐺 are unlikely to appear in any of the 𝐺𝑗.

More Precisely:

• Let 𝐺⋆ be the graph that contains an edge 𝑒 ∈ 𝐺𝑗 if the (𝑇 + 1)-neighborhood of 𝑒 in 𝐺𝑗 is not a tree.

• Then 𝐺⋆ has maximum degree ≤ 𝜖Δ w.h.p.

• Run NIBBLE on the 𝐺𝑗 and combine the colorings.

• Intuitively, for large enough 𝜂, the graphs 𝐺1, … , 𝐺𝜂 are locally treelike.*

*Literally false, but morally true



Static Algorithm: Final Algorithm

1. Split the graph 𝐺 into graphs 𝐺1, … , 𝐺𝜂 using the subsampling technique.

2. Run NIBBLE on each of the 𝐺𝑗 (using different colors) to obtain tentative colorings.

3. Run the greedy algorithm on edges that fail/are never sampled across all the 𝐺𝑗.



The Dynamic Algorithm



Dynamic Algorithm: High Level Approach

The main idea: Maintain the output of our static algorithm as the input changes.

Fix random bits so output of static algorithm depends only on edges in 𝐺.

After an update: Iterate through rounds propagating changes in colors.

The update procedure needs to:

1. Change as few colors as possible (low recourse).

2. Be efficient to implement (update time proportional to recourse).

• [Bhattacharya et al., SODA’21] obtain (1) but not (2).



Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge 𝑒 ∈ 𝑉
2

 is assigned:

1. A random index 𝑗𝑒 ∈ [𝜂], determining its subsampled graph.

2. A random index 𝑖𝑒 ∈ [𝑇], determining its round.

3. A random color sequence 𝑐𝑒 1 , … , 𝑐𝑒(1/𝜖2), for sampling its tentative color.

Sampling the tentative color ෥𝝌(𝒆):

𝑒

𝑐𝑒: …
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Recall that 𝑃𝑖 𝑒 ≥ Ω(Δ𝜖2)



Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge 𝑒 ∈ 𝑉
2

 is assigned:

1. A random index 𝑗𝑒 ∈ [𝜂], determining its subsampled graph.

2. A random index 𝑖𝑒 ∈ [𝑇], determining its round.

3. A random color sequence 𝑐𝑒 1 , … , 𝑐𝑒(1/𝜖2), for sampling its tentative color.

• All random bits fixed in advance ⇒ output only depends on edges present in 𝐺.

• We can now bound the recourse of an update.



Dynamic Algorithm: Bounding the Recourse

𝐴(𝑡) = edges that change tentative colors during the 𝑡𝑡ℎ update.

𝐴𝑖
𝑡

= edges in 𝐴(𝑡) at round 𝑖.

Two Key Lemmas:

Lemma. The recourse of the 𝑡𝑡ℎ update is 𝑂(|𝐴 𝑡 |).

Lemma. E |𝐴𝑖
𝑡

| ≤ 4𝜖 ⋅ E |𝐴<𝑖
𝑡

| .

After the insertion or deletion of an edge 𝑒:

⇒ E[recourse] ≤ E |𝐴≤𝑇
𝑡

| ≤ 1 + 4𝜖 𝑇 ⋅ E |𝐴𝑖𝑒

𝑡
| ≤ 1 + 4𝜖 𝑇 ≤ 1/𝜖4     (up to a 𝑂(1) factor)



Dynamic Algorithm: Efficiently Propagating 
Changes
How can we efficiently identify changes in the coloring caused by some 𝑒 ∈ 𝐴𝑖

𝑡
?

Let 𝑐 and 𝑐′ denote the previous and new colors of 𝑒 respectively.

Let 𝑓 be an edge sharing an endpoint with 𝑒 s.t. 𝑖𝑓 ≥ 𝑖𝑒.

P 𝑐 ∈ 𝑐𝑓 ≤
1

𝜖2 ⋅
1

1+𝜖 Δ
≤ 𝑂

1

𝜖2Δ
      and        P 𝑐′ ∈ 𝑐𝑓 ≤ 𝑂

1

𝜖2Δ
.

Thus, in expectation, 𝑂(1/𝜖2) edges can be directly affected by this change.

With the appropriate data structures, we can identify these edges efficiently and resample their colors.

⇒ update time is proportional to recourse.



Dynamic Algorithm: Summary

Maintain the output of our static algorithm as the input changes.

Fix random bits so output of static algorithm depends only on edges in 𝐺.

After an update: Iterate through rounds propagating changes in colors.

Recourse is 𝑂(poly(1/𝜖))

Update time proportional to recourse ⇒ gives 𝑂(poly(1/𝜖)) update time.



Open Problems



Open Problems in Edge Coloring

Q: Can we close the gap between the dynamic and static setting?

Open Problem. Can we get dynamic Δ + ෨𝑂(Δ0.99) coloring in ෨𝑂(1) update time?

• Even getting Δ + ෨𝑂(Δ0.99) coloring in ෨𝑂(1) recourse is not known.

• Not clear if this is possible or not, can we get a lower bound?

Open Problem. An incremental (Δ + 1)-coloring algorithm with ෨𝑂(1) update time?

Open Problem. A parallel (Δ + 1)-coloring algorithm with ෨𝑂(1) depth?



Questions?
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