>
» 9
"2
i
. .'/ ;
A .
P v
H
\
v
A -
»| - - VA . - -
o« N S /
N
.
\
» \
»

Lecture 5:
Dynamic Edge Coloring via the Nibble Method

Martin Costa

AlgUW: Workshop on Dynamic and Almost Linear-Time Algorithms

Q: How fast can we edge color a graph?

Near-Linear Time Coloring

Theorem. Greedy 2A — 1 coloring in 0(mlogA) time.

Theorem [Duan, He, Zhang, SODA9]. (1 + €)A coloring in 0(m/e?) time for e > 0, when A = Q(logn /e).
Theorem [Elkin, Khuzman, arXiv'24]. (1 + €)A coloring in O(m/¢) time for e > 0.

Theorem [ABBCSZ, STOC’25]. A + 1 coloring in O(mlogA) time.

Q: Are there any coloring algorithms that run in 0(m) (i.e. exact-linear) time?

Exact-Linear Time Coloring

 For (2 + €)A coloring, a trivial algorithm is known:

Randomized Greedy:

For each edge e, sample colors u.ar. until a color a available at e is found and set y(e) « a.

Analysis:
1. Q(eA) colors available at each edge = each iteration takes 0(1/¢) expected time.
2. RunsinoO(m/e) time w.h.p. fore > 0.

« All known implementations of greedy 2A — 1 coloring algorithm take Q(mlogA) time.

Q1: For any constant € > 0, is there a static (1 + €)A coloring algorithm with 0(m) running time?

The Dynamic Setting

The Dynamic Setting

Input: A sequence of updates (edge insertions/deletions) in a graph G and a parameter A such that A(G) never
exceeds A.

Want to (explicitly) maintain a coloring y of G. Let G® denote the graph G after the tt"* update.

After the t!" update: Update y to an edge coloring of the graph ¢®.

update time = the time taken to handle an update.

recourse = the number of edges that change color during an update.

recourse < update time.

Dynamic Edge Coloring

Theorem. Dynamic (1 + €)A coloring in 0(log” n /€?) update time, when A = Q(log? n /€?).
[Duan, He, Zhang, SODA’19]

Theorem. Dynamic (1 + €)A coloring in 0(log® nlog® A /) update time.
[Christiansen, STOC’22]

Q2: For any constant € > 0, can we maintain a (1 + €)A coloring in constant update time?

» A dynamic algorithm with 0(1) update time = a static algorithm with 0(m) running time.

Barrier 1: A (Soft) Lower Bound

Theorem [Chang, He, Li, Pettie, Uitto, SODA18]. For any 0 < € < 1/3, there exists a graph ¢ of max degree A
and a (1 + €)A-edge coloring y of G with exactly 1 uncolored edge such that:

Extending y to be a coloring of the whole graph requires changing the colors of Q(log(en)/¢) edges.
« Any algorithm that works by extending arbitrary colorings has Q(logn) recourse.

e [Duan et al., SODA19] and [Christiansen, STOC’22] take this approach (based on multi-step Vizing chains).

« We need a different approach...

Dynamic Edge Coloring via the Nibble Method

Theorem. Dynamic (1 + €)A coloring with poly(1/€) recourse, when A = Q(logn / poly(e)).
[Bhattacharya, Grandoni, Wajc, SODA’21]

- [Bhattacharya et al., SODA’21] maintain a coloring from a ‘nice’ distribution - not subject to the soft lower bound.

« Their algorithm is based on the static NIBBLE algorithm for edge coloring.

> A technique that has been well studied in various settings.

» Completely different to algorithms based on Vizing chains!

« Can we implement this algorithm efficiently?

Barrier 2: Regularization Gadgets

NIBBLE only works on near-regular graphs: Need to use ‘regularization gadgets'™

Create a cligue of size A — 1 out of dummy nodes for each ‘real’ node wu.

Connect u to A — deg(u) of its dummy nodes = near-regular supergraph of G.

- Leads to Q(nA?) running time overhead in the static setting

« Can we bypass the need for these gadgets?

Dynamic Edge Coloring via the Nibble Method

Theorem. Dynamic (1 + €)A coloring with poly(1/€) update time, when A > (log n)®®°ly(1/€)),
[Bhattacharya, C, Panski, Solomon, SODA’24]

- Bypass the need for regularization by using the subsampling technique of [Kulkarni, Liu, Sah, Sawhney,
Tarnawski, STOC22].

« This allows for a new variant of NIBBLE: works for arbitrary graphs, not just near-regular graphs.

* No need for regularization gadgets — admits an efficient implementation.

Corollary. Static (1 + €)A coloring with 0 (m poly(1/¢€)) running time, when A > (log n)®®°ly(1/€)),

Follow up work removed restriction on A in static setting (based on MSVs): [Bernshteyn, Dhawan, arXiv'24]

Rest of the Talk

« The static NIBBLE algorithm and its analysis.
« The dynamization of NIBBLE and its implementation.

« Open problems.

The Static Algorithm

Static Algorithm: How Does NIBBLE Work?

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

® o o
\‘ /I "
‘\ /I Il
Y / ;
. \“ ,,'I III
Runs in T = (1/€)log(1/€) rounds, uses (1 + €)A colors L ‘-
¥ A °
Foreachroundi=1,..,T: L W
¢”’ \ K ‘
‘ ‘\‘ /ll “‘
v @ .‘
\)
O--__ \ “h ————————— °
LY Ll ' -
,l*\\ /I' \“
4 N / ‘
'I \\ l, “
l’ \\ ', y
,/' \\ /g “
/ \ // \
/
o

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,..,T:
1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

Greedily color the subgraph F of all edges that were never
sampled or failed using different colors

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

Greedily color the subgraph F of all edges that were never
sampled or failed using different colors

P;(e) = colors available to e at round i

Static Algorithm: How Does NIBBLE Work?

All edges are initially uncolored

RunsinT = (1/¢)log(1/€) rounds, uses (1 + €)A colors

Foreachroundi=1,...,T:

1. Sample each uncolored edge e w.p. €

2. Sample a tentative color %(e) for each sampled edge
u.ar. from its palette P;(e)

3. The edges with conflicts FAIL

Greedily color the subgraph F of all edges that were never
sampled or failed using different colors

P;(e) = colors available to e at round i

Static Algorithm: Analysis of NIBBLE

Suppose we can show that:
1. For each edge e sampled during round i, | P;(e)| = Q(A poly(e)).

2. For each node u, degp(u) < 0(eA).

(1) = can sample colors from P;(e) in O(poly(1/¢)) time.

(2) = can color the failed and leftover edges with 0(eA) extra colors.

« Leads toa O(mpoly(1/¢)) time algorithm that uses (1 + €)A colors.
* Near-regularity necessary for concentration bounds in standard analysis.

« Can we perform a different analysis?

Static Algorithm: NIBBLE on Forests

« |f input graph G is a forest, NIBBLE is much easier to analyze.
« Objects that are usually not independent, are independent when G is a forest.
* Let e be an edge sampled during round i.

« Consider the state of NIBBLE after the first i — 1 iterations:

Static Algorithm: NIBBLE on Forests

« Consider the graph with the edges appearing in the first i — 1 rounds.
« y and v are in different connected components.
« = the palettes of P;(u) and P;(v) independent.

« Hence:

E[IP,(e)]] = ¥, P[c € P;(e)] = Y. Plc € P,(w)] - P[c € P;(v)] = 'Pi((’ﬂ'g 0l > a(ae?).

Static Algorithm: NIBBLE on Locally Treelike
Graphs

« Are there more general graphs that can be analyzed in this simple manner?

Claim: The color assighed to an edge e by NIBBLE depends only on the structure of the (T + 1)-neighborhood
of the edge e.

« If the (T + 1)-neighborhood of every edge e is a tree, the same analysis goes through.
« We call such graphs ‘locally treelike’.

« Reduction to locally treelike graphs [Kulkarni et al., STOC22].

Static Algorithm: Subsampling to Locally
Treelike Graphs

Subsampling: Split the graph ¢ into graphs G, ..., G, by placing each edge e € G into one of the G;
independently and u.ar. (n is a parameter that depends on A and ¢).

“ﬁ W

 Cycles in G are unlikely to appear in any of the ¢;.

Static Algorithm: Subsampling to Locally
Treelike Graphs

Subsampling: Split the graph ¢ into graphs G, ..., G, by placing each edge e € G into one of the G;
independently and u.ar. (n is a parameter that depends on A and ¢).

“ﬁ W

 Cycles in G are unlikely to appear in any of the ¢;.

Static Algorithm: Subsampling to Locally
Treelike Graphs

Subsampling: Split the graph ¢ into graphs G, ..., G, by placing each edge e € G into one of the G;
independently and u.ar. (n is a parameter that depends on A and ¢).

 Cycles in G are unlikely to appear in any of the ¢;.

More Precisely:

- Let ¢ be the graph that contains an edge e € ¢; if the (T + 1)-neighborhood of e in G; is not a tree.
« Then G* has maximum degree < €A w.h.p.

* Run NIBBLE on the G; and combine the colorings.

- Intuitively, for large enough n, the graphs G,, ..., G, are locally treelike.”

*Literally false, but morally true

Static Algorithm: Final Algorithm

1. Split the graph G into graphs G;, ..., G, using the subsampling technique.

2. Run NIBBLE on each of the G; (using different colors) to obtain tentative colorings.

3. Run the greedy algorithm on edges that fail/are never sampled across all the G;.

The Dynamic Algorithm

Dynamic Algorithm: High Level Approach

The main idea: Maintain the output of our static algorithm as the input changes.
Fix random bits so output of static algorithm depends only on edgesin G.

After an update: lterate through rounds propagating changes in colors.
The update procedure needs to:
1. Change as few colors as possible (low recourse).

2. Be efficient to implement (update time proportional to recourse).

« [Bhattacharya et al., SODA’21] obtain (1) but not (2).

Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge e € (") is assigned:

1. Arandom index j, € [n], determining its subsampled graph.

2. Arandom index i, € [T], determining its round.

3. A random color sequence c,(1), ..., c.(1/€?), for sampling its tentative color.

Sampling the tentative color ¥(e):

Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge e € (") is assigned:

1. Arandom index j, € [n], determining its subsampled graph.

2. Arandom index i, € [T], determining its round.

3. A random color sequence c,(1), ..., c.(1/€?), for sampling its tentative color.

Sampling the tentative color ¥(e):

Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge e € (") is assigned:

1. Arandom index j, € [n], determining its subsampled graph.

2. Arandom index i, € [T], determining its round.

3. A random color sequence c,(1), ..., c.(1/€?), for sampling its tentative color.

Sampling the tentative color ¥(e):

Recall that |P;(e)| = Q(Ae?)

Dynamic Algorithm: Fixing the Randomness

At the start of the algorithm, each potential edge e € (") is assigned:
1. Arandom index j, € [n], determining its subsampled graph.
2. Arandom index i, € [T], determining its round.

3. A random color sequence c,(1), ..., c.(1/€?), for sampling its tentative color.
« All random bits fixed in advance = output only depends on edges present in G.

« We can now bound the recourse of an update.

Dynamic Algorithm: Bounding the Recourse

A® = edges that change tentative colors during the t* update.

A® = edges in A® at round i.

Two Key Lemmas:

Lemma. The recourse of the tt" update is 0(]4®)).

Lemma.E [|A§t)|] <4e-E [|A(<ti)|].

After the insertion or deletion of an edge e:

(©)

= E[recourse] < E [|AST|] < (1+4e)T-E [|A§?|] <(1+4e)T <1/e* (uptoa0(1) factor)

Dynamic Algorithm: Efficiently Propagating
Changes

How can we efficiently identify changes in the coloring caused by some e € A4;
Let c and ¢’ denote the previous and new colors of e respectively.

Let f be an edge sharing an endpoint with e s.t. iy > i..

Pleec] <5 mmn=0(z;) and Pleec] <o(z;)

Thus, in expectation, 0(1/e2) edges can be directly affected by this change.

With the appropriate data structures, we can identify these edges efficiently and resample their colors.

= update time is proportional to recourse.

Dynamic Algorithm: Summary

Maintain the output of our static algorithm as the input changes.

Fix random bits so output of static algorithm depends only on edges in G.
After an update: Iterate through rounds propagating changes in colors.
Recourse is O(poly(1/¢))

Update time proportional to recourse = gives 0 (poly(1/¢€)) update time.

Open Problems

Open Problems in Edge Coloring

Q: Can we close the gap between the dynamic and static setting?
Open Problem. Can we get dynamic A + 0(A%°?) coloring in 0(1) update time?

« Even getting A + 0(A%°®) coloring in 0(1) recourse is not known.

« Not clear if this is possible or not, can we get a lower bound?
Open Problem. An incremental (A + 1)-coloring algorithm with 0(1) update time?

Open Problem. A parallel (A + 1)-coloring algorithm with 0(1) depth?

Questions?

	Slide 1: Lecture 5: Dynamic Edge Coloring via the Nibble Method
	Slide 2: Q: How fast can we edge color a graph?
	Slide 3: Near-Linear Time Coloring
	Slide 4: Exact-Linear Time Coloring
	Slide 5: The Dynamic Setting
	Slide 6: The Dynamic Setting
	Slide 7: Dynamic Edge Coloring
	Slide 8: Barrier 1: A (Soft) Lower Bound
	Slide 9: Dynamic Edge Coloring via the Nibble Method
	Slide 10: Barrier 2: Regularization Gadgets
	Slide 11: Dynamic Edge Coloring via the Nibble Method
	Slide 12: Rest of the Talk
	Slide 13: The Static Algorithm
	Slide 14: Static Algorithm: How Does NIBBLE Work?
	Slide 15: Static Algorithm: How Does NIBBLE Work?
	Slide 16: Static Algorithm: How Does NIBBLE Work?
	Slide 17: Static Algorithm: How Does NIBBLE Work?
	Slide 18: Static Algorithm: How Does NIBBLE Work?
	Slide 19: Static Algorithm: How Does NIBBLE Work?
	Slide 20: Static Algorithm: How Does NIBBLE Work?
	Slide 21: Static Algorithm: How Does NIBBLE Work?
	Slide 22: Static Algorithm: How Does NIBBLE Work?
	Slide 23: Static Algorithm: How Does NIBBLE Work?
	Slide 24: Static Algorithm: How Does NIBBLE Work?
	Slide 25: Static Algorithm: Analysis of NIBBLE
	Slide 26: Static Algorithm: NIBBLE on Forests
	Slide 27: Static Algorithm: NIBBLE on Forests
	Slide 28: Static Algorithm: NIBBLE on Locally Treelike Graphs
	Slide 29: Static Algorithm: Subsampling to Locally Treelike Graphs
	Slide 30: Static Algorithm: Subsampling to Locally Treelike Graphs
	Slide 31: Static Algorithm: Subsampling to Locally Treelike Graphs
	Slide 32: Static Algorithm: Final Algorithm
	Slide 33: The Dynamic Algorithm
	Slide 34: Dynamic Algorithm: High Level Approach
	Slide 35: Dynamic Algorithm: Fixing the Randomness
	Slide 36: Dynamic Algorithm: Fixing the Randomness
	Slide 37: Dynamic Algorithm: Fixing the Randomness
	Slide 38: Dynamic Algorithm: Fixing the Randomness
	Slide 39: Dynamic Algorithm: Bounding the Recourse
	Slide 40: Dynamic Algorithm: Efficiently Propagating Changes
	Slide 41: Dynamic Algorithm: Summary
	Slide 42: Open Problems
	Slide 43: Open Problems in Edge Coloring
	Slide 44: Questions?

